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Abstract 

paper an exact numerical quantization method, based on quantum action variable 
is presented. The quantum momentum function (QMF) is redefined such that the 
nding quantum action variable (QAV) is an integer ( 1=h ) for energy eigenvalues 
 integer for off eigenvalues. The energy eigenvalues obtained by quantizing the 
 action variable are exact up to the accuracy of the numerical methods used. One of 

or advantages of this method is that one could use interpolations or extrapolations for 
g boundstate energies from a set of QAV values corresponding to non-eigen energies. 
es are given to illustrate the new numerical method and the interpolation and 
lation methods. 

DUCTION 

KB theory the semiclassical eigenvalues are obtained by the condition    

                  h)
2
1+(n = dxp  J Cc ∫≡                              (1) 

,2,..., Jc is the classical action variable1, and pc is the classical momentum 
en by pc = (E - v(x))1/2. The integration is carried over a complete period. 
 action variable 2,3, the quantum analogue of the classical action variable, is 

 contour integral 
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where the quantum momentum function (QMF), p(x), is the solution of the quantum 
momentum function equation (QMF equation), 

 (x).p = (x)p + 
dx

dp(x)
i
h 2

c
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The contour C in equation (2) encloses the two physical turning points of pc(x). The 
bound state boundary condition imposed upon QMF p(x) is  
 

               (4) .0h as     (x)pp(x) c →→

 
Since the quantum momentum function p(x) is related to the wavefunction ψ(x) by 
 

 
(x)
x
(x)

i
 = p(x)

ψ

ψ
∂

∂
h                             (5) 

  
the contour integral (2) counts the number of zeros of ψ(x) (i.e. number of poles of p(x)). 
As there are finite number of zeros of ψ(x), and hence finite number of isolated poles of 
p(x), lie between two physical turning points for both the eigen and off eigenvalues of E 
3, unlike in the semiclassical (WKB) case, the quantum action variable J is an integer 
(assuming ) for both the eigen and off eigenvalues of E . Therefore the definition of 
the quantum action variable in references 

1=h
2,3 cannot be directly employed for numerical 

calculations on boundstate energy eigenvalues. 
In this paper the quantum momentum function is redefined such that the 

corresponding quantum action variable is an integer ( 1=h ) for eigenvalues and non-
integer for off eigenvalues. This property is then applied for quantizing the quantum 
action variable numerically. Since the QAV J varies smoothly between eigenvalues, by 
calculating J at different energies (not necessarily be at eigen values) approximate bound 
state eigenvalues can be calculated by interpolation or extrapolation.  These energies can 
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be employed as starting values for more accurate calculations when higher accuracy is 
desired. 
 
 
 
2. THEORY / NUMERICAL METHOD 
 
       In order to develop a numerical method based on the quantum action variable 
theory to calculate bound state energies, first we redefine the quantum momentum 
function (denoted by P(x)) by rewriting the equation (1) in the form 
with the boundary condition  as and then we solve the equation (6) 

iteratively, starting with and 

)()( xPxP c→ 0→h

)()( xPxP c=
x
xP

x
xP c

∂
∂

=
∂

∂ )()(  along the contour C. After 

each iteration 
x
xP

∂
∂ )( is calculated numerically and then substitute it back in the equation 

(6) to obtain new P(x). The convergence of P(x) for a given energy is tested by 
calculating the quantum action variable JΡ (by equation (7)) and checking its 
convergence.  

 
x
xi+xP = (x) 2

c ∂
Ρ∂

Ρ
)()( h                 (6) 

                    

 (x)dx
2
1 = J C Ρ∫Ρ π

                     (7) 

 
  In this study we found that unlike the quantum action variable defined by the 
equation (2), the new quantum action variable JΡ is an integer for eigenvalues and non-
integer for off-eigen values. The reason for this difference is that the branch introduced 
by the square root in equation (6) produces non zero contribution to the contour integral 
(7) for off-eigenvalues while it produces zero contribution for the eigenvalues. Note that 
unlike the previous QMF, the new QMF is a multivalued function of x and does not 
satisfy the equation (5). There are many ways to construct closed contours in the 
complex x-plane to enclose the physical turning points of classical momentum function 
Pc(x). However, one has to be careful not to include any non-physical turning points or 
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poles of Pc(x) inside the contour C.  
In this study we found that the rapid convergence of JΡ can be achieved by using 

2-D projection of a classical trajectory on the complex coordinate plane (i.e. Complex x -
plane.) as the contour. If the starting point of the trajectory is close enough to one of the 
physical turning points of Pc(x) and it is complex then the trajectory will enclose the 
other turning point as well (see figure (1)). This way we obtain closed contours which 
enclose two physical turning points of Pc(x) and the values of Pc(x) at the discreet points 

on the contours. 
x
P
∂
∂  is calculated at each discreet point on the contour, from P(x) by the 

following equations,  

                 

otherwise  ,
x2

)x( - )x(
  
  

     n=i if  ,
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)x( - )x(
  
  

     1=i if  ,
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∆
ΡΡ

∂
Ρ∂                                               (8) 

 
where n is the total number of points on the contour. 
In order to calculate P(x) correctly from equation (6) the square root function is 
redefined such that the P(x) is smooth along the contour. 
 
 

For the evaluation of the contour integral JΡ ,the extended Simpson rule is used 4. 
The value of  |JΡ - (JΡ)old| is compared with a tolerance value to test the convergence of 
the quantum action variable JΡ. The converged value of JΡ is then compared with a given 
integer n to find out whether the energy used in the calculation is the boundstate 
eigenvalue corresponding to integer n. The rational functional approximation is used for 
interpolation and extrapolation of energies 4.    
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Fig. 1. A typical contour in the complex x plane. x1 and x2 are the physical turning points. A branch cut of 
            pc (broken line) runs between  and . S is the initial point of the classical trajectory which 1x 2x
           encloses both turning points. 
 
 
3.  NUMERICAL ILLUSTRATIONS 
 
       Two examples are given here to illustrate the numerical method and the accuracy 
of the interpolation and extrapolation techniques described in the last section. The first 
illustration is the "barrier Oscillator" potential v(x)=x2 + a2/x2. Since this potential 
admits analytic solutions 1,5, the accuracy of our contour integral method can be 
evaluated. In addition to four turning points, this system has one pole of Pc(x) at the 
origin. In order to exclude the pole, the starting point of the classical trajectory is taken 
close to the turning point x1 (see figure (2)). Then only the two positive turning points x1 
and x2  of Pc(x) were enclosed by the trajectory as shown in figure (2). 
 
 
The exact boundstate energy of this system is given by equation (9).  

               
4

+a2 + 1)+2(2n = E
2

2 hh                                             (9) 

C 

Re Z 

S 

x2 x1 
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The results of the numerical calculations are presented in table (1). As shown by 
the data presented in the table, the calculated values of the first six bound state energies 
are in excellent agreement with the exact values, although the accuracy slightly 
decreases for higher excited states. Note that for this calculation the Plank constant h  is 
assumed to be 0.001 units.( small values of guarantee the convergence of Ρ(x) in the 
equation (6)). 

h

 

 Im Z 
 

x1 
x2 x4 x3 Re Z 

 

 

 
C  

 

 

 

 

 

 

 

 
 
Fig. 2. A contour in the complex x plane for the potential v(x) = x2+ a/x2. x1, x2, x3, and x4 are the four 
            turning points of pc. When the initial point S is close to x1, the trajectory encloses only the turning  
            points on the right (x1 and x2). The branch cuts of pc are marked with broken lines. 
 
 
 

Table 1. V(x) = x2 + a2/x2 with a  = 0.1 and h = 0.001 
 

n Calculated Energy Exact Energy 
0 0.6344563226 0.6344563226 
1 0.6384563227 0.6344563226 
2 0.6424563228 0.6344563226 
3 0.6464563229 0.6344563226 
4 0.6504563228 0.6344563226 
5 0.6544563228 0.6344563226 
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The second illustration, the anharmonic oscillator potential v(x)=x2 + λx4 with λ 

=0.1 is used to illustrate the capability of the interpolation and extrapolation techniques. 
This system cannot be solved analytically. This system also has four turning points; two 
of them are real and physical while the other two are complex. We choose 2-D projection 
of a complex classical trajectory (on classical co-ordinate space) which include only the 
two physical turning points of Pc(x) as the contour (as shown in figure (3)).  

In order to illustrate the accuracy of the interpolation methods for obtaining 
approximate bound state energies, first we calculate QAV J for 10 different equally 
spaced eigen energies between 1.0 and 14.0. (Note that none of these values are 
eigenvalues.)  

The corresponding calculated J values are between -0.3066 and 5.01026. Then 
the first six (i.e. for n=0,1..5) approximate bound state energies are found by 
interpolation while the last five bound states are found by extrapolation.  

The resulting interpolated (or extrapolated) bound state energies together with the 
accurate bound state energies (calculated as in the first example) are shown in table (2). 
As shown in table (2), the agreement between accurate energies and the interpolated and 
extrapolated energies for the first eight eigenvalues are very good. Although the last 
three extrapolated energy values are not so accurate, they can be taken as starting values 
for more accurate calculations. The table (3) shows the first eleven interpolated energies 
using 10 non-eigen values between 1.0 and 30.0. One can see the agreement between 
new interpolated  energies and the accurate energies. As one would expect, interpolation 
give rise to better values than the extrapolated values. 
 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3. The points x1, x2, x3, and x4 are the turning points of pc in the com
 = x2 + λ x4. The classical trajectory encloses only the real turning point

Im Z 
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x1 

x3 

x4 

Re Z 

            between x1 and x2, x3 and ∞, and x4 and -∞. 
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Table 2. Comparison between exact energy eigen values and the energy eigen values found by 

extrapolation / interpolation for the potential  v(x) = x2 + λ x4 with λ =0.1. The data set used for 
interpolations and extrapolations consists of ten equally spaced energy values between 1.0 and 14.0 along 
with ten corresponding J values. 
 

n Enegry  
(Accurate) 

Energy  
Interpolated/Extrapolated 

0 1.065285 1.065036 
1 3.306872 3.306863 
2 5.747959 5.747950 
3 8.352677 8.352672 
4 11.09859 11.09859 
5 13.96993 13.96992 
6 16.95474 16.95474 * 
7 20.04380 20.04360 * 
8 23.22949 23.22861 * 
9 26.50549 26.50297 * 
10 29.86646 29.86059 * 

                           * These values are calculated by extrapolations. 
 

 

Table 3. Comparison between exact energy eigen values and the energy eigen values found by 
interpolation for the potential v(x) = x2 + λ x4 with λ =0.1. The data set used for interpolations consists of 
ten equally spaced energy values between 1.0 and 30.0 along with ten corresponding J values. 
 

n Energy 
(Accurate) 

Energy 
(Interpolation) 

0 1.06528 1.06501 
1 3.30687 3.30687 
2 5.74795 5.74795 
3 8.35267 8.35267 
4 11.09859 11.09859 
5 13.96993 13.96992 
6 16.95474 16.95478 
7 20.04380 20.04385 
8 23.22949 23.22952 
9 26.50549 26.50554 
10 29.86646 29.86651 

 30



A. Nanayakkara/Sri Lankan Journal of Physics, Vol.1,(2000) 23-31 

 

 

 
4.  DISCUSSION 
 
        The definitions presented in this paper for the quantum momentum function and 
the quantum action variable enable us to introduce a new numerical method for obtaining 
bound state energy eigenvalues. Our calculations have clearly demonstrated that this 
contour integral method can yield accurate bound state eigenvalues. The accuracy of the 
method mainly depends upon the number of points on the contour and the accuracy of 
the numerical method used for contour integration. The convergence of the quantum 
momentum function Ρ(x) depends on the value of and the accuracy of the numerical 

method used to calculate 

h

x
xP

∂
∂ )( . 

Since the new quantum action variable varies smoothly between eigenvalues, the 
approximate bound state energies can be obtained by interpolation techniques. We 
showed in the last section that as few as ten J values corresponding to non-eigen energies 
can be utilized to obtain eleven (or more) bound state energies with a good accuracy by 
interpolation. Note that the direct numerical integration of Schrodinger's equation or 
matrix diagonalization methods cannot be employed as such. This one dimensional 
contour integral method can be extended for multi dimensional systems using 
multidimensional quantum action variable theory 6. 
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