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Abstract 

 
taking the study of behaviour of a BPS monopole moving in the field of another BPS 
ole, in moduli space, Dirac’s equation has been solved for energy eigen values and it 

een shown that spin momentum of an interacting BPS monopole behaves as extra 
 source. Introducing suitable spinors, the Pauli equation for a BPS monopole moving 
field of another BPS monopole has been solved in moduli space and it has been shown 
hoc introduction of spin in the system of two BPS monopoles perceptibly modifies the 
 eigen values and eigen functions of bound states of the system. 

DUCTION   
from ‘t Hooft-Polyakov(1,2) non-Abelian monopole Bogomol’nyi-Prasad-
ld (BPS) monopoles(3) have attracted much attention in a variety of contexts in 
and mathematical physics(4) and more recently in pure mathematics BPS 

 provide a three-dimensional example of topological solitons of Bogomol’nyi 
re static, finite energy solutions of classical field equations and stable because 

y attains a lower topological bound, the Bogomol’nyi bound. Much progress 
nding of the dynamics of such solitons has been made over the past decade 
dea of moduli space approximation(5). In this scheme one approximates the 
n of several interacting solitons by geodesic motion on the Riemanian 
f static multi-soliton solutions. To quantise, one works in the Schrodinger 
ve functions are complex valued functions on the moduli space and the 
amiltonian is taken to be proportional to the Laplace-Beltrami operator(6). In 
 mathematical analysis of moduli space is still very difficult problem, but in 
 two BPS monopoles one could exploit special properties, in particular the 
r property of the metric, and obtained sufficient information about the moduli 
                                      
ing author 
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space to calculate geodesics and to study the Laplace operator in some detail. The 
analysis of the moduli space is summarised in the recent book by Atiyah and Hitchin(7) 
and the paper of N. Seiberg(8). Jackiw and Rebbi first observed that the Dirac operator 
coupled to a t’ Hooft-Polyakov monopole has zero modes(9) and gave a physical 
interpretation of them; later Callias(10) rigorously proved an index theorem for the Dirac 
operator in the background of a general BPS (multi-) monopole. Undertaking the study 
of monopoles and dyons in moduli space we(11) have analyzed the extended structure of 
non-Abelian dyons and obtained the structure for dyonic mass and electric and magnetic 
fields in the interior region of dyon and showed that when collective coordinates of 
monopoles are time dependent it acquires momentum and electric charge and become a 
moving dyon. We have also analyzed the connection of moduli space of monopoles with 
normalized bosonic and fermionic zero modes(11). We have undertaken the study of 
kinematics and monodromies around singularities in quantum moduli space of four-
dimensional N=2 supersymmetric theory and obtained spectra of BPS state in weak and 
strong coupling regions(12). In the present paper, we have undertaken the study of Pauli 
equation for BPS monopoles in moduli space and showed that the interaction of spin and 
the potential leads to an extra-energy expressible in terms of spin momentum of the 
particle concerned. Analyzing Dirac equation in moduli space, the study of interaction of 
spin and orbital angular momentum has been undertaken. We have also undertaken the 
study of a BPS monopole moving in the field of another BPS monopole by introducing 
suitable spinors and bound states energy eigen values and eigen functions have been 
obtained in moduli space.  
 
2. BEHAVIOUR OF A BPS MONOPOLE IN THE FIELD OF ANOTHER BPS 
      MONOPOLE  
  
 Our standard references for background material on BPS monopoles will be the 
book by Atiah and Hitchin(7) and the paper by Gibbons and Manton(6). We follow the 
notational conventions adopted there and denote by Ai, i = 1, 2, 3, the cartesian 
components of an SU(2) gauge potential 

r
A on R and by        3 Φ  a Higgs field in the adjoint 

representation of SU(2). More specifically, writing su(2) for the Lie algebra of SU(2), we 
have four maps 

( )23:, SURiA →Φ .          
We use the gauge potential to define the covariant derivative 

igAiiD += ∂           
where g is the magnetic charge of BPS monopole and the curvature is given by  

⎥⎦
⎤

⎢⎣
⎡+−= jAiAiAjjAiijF ,∂∂ .        
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We shall often refer to the gauge group SU(2) as the isospin group and use a basis Ta (a 
= 1, 2, 3,) of su(2) satisfying [ ] ,, cTabcbTaT =∈ which can be expressed in terms of the 

Pauli matrices .
2
1    aiaTviaa ττ =  We also require a norm  on su(2) which we take to 

be .2
2
12 trTT −=  We can then introduce the space A of  pairs ( )Φ,A

r
 which satisfy the 

boundary condition 
( ) 1.lim =Φ

∞→
x

x
r

r         ...(1) 

and the base point condition 
( ) 33,0,0

3
.lim Txx −=Φ∞→ .        ...(2) 

The group G of gauge transformations is, by definition, the space of maps 
 which satisfy the base point condition ( )2: 3 SURg →

( ) .213,0,0
3

.lim =∞→ xgx          ...(3) 

G acts freely on A and dividing by the action, we obtain the true configuration space 

.
G

A
=℘           ...(4) 

Finally; we introduce a non-Abelian magnetic field 

jkFijkiB ∈=
2
1           

and define that a BPS monopole is a pair ( ) AA ∈Φ,
r

 which satisfy the Bogomol'nyi 
equation 

.Φ= iDiB           ...(5) 

We introduce the notation  for the space of all k-monopoles.  is an infinite 
dimensional manifold on which the group G acts freely. Quotienting  by this action, 
we obtain the moduli space which is differentiable manifold of dimension 4k. It has 
a natural Riemannian metric introduced from the Yang-Mills-Higgs (YMH) kinetic 
energy functional and it has been explained

Xk Xk
Xk

Mk

(7) why equipped with this metric is a 
hyperkahler manifold. Since is precisely the subset of 

Mk
Mk ℘on which the potential 

energy functional V is minimal for given k, it is a natural candidate for the configuration 
space of a truncation of the YMH theory in the topological sector with winding number 
k. Manton et. al(4) have given the interpretation of the 4k parameters and the moduli 
space of a single monopole. is a flat manifold of the form M1

13
1 SRM ×=           ...(6) 

with R and S3     1  as position and angular coordinates respectively. 
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 Writing ( )ψ t x, r for a four-component spinor which also transforms under the 
fundamental representation of the SU(2) isospin group, the (1+4)-dimensional Dirac 
equation in the temporal gauge A0= 0, may be written as 

{ } ,02
1

0 =+⊗Γ+⊗Γ− ⎥⎦
⎤

⎢⎣
⎡ ψµ

µ∂ cmDct      ...(7) 
where is the mass of BPS monopole while  is defined by equation (4.2) and 

 Specifically, we consider SU(2) gauge potential 

 which are independent of 

m1 Di
.4 Φ=D

RRRonA ×== 34    4,3,2,1,µµ x4  and have self-dual 
curvature 

.
2
1

µνλµνλ FkkF ∈=                    ...(8) 

It may be checked that this equation is equivalent to the Bogomol'nyi equation if the 
fourth component of the gauge potential is identified with the Higgs field,  We 
can obtain five 4 

A4 = Φ.
× 4 complex matrices ( )µΓΓ ,o , from the standard Dirac -matrices: γ

.321054,,00 γγγγγγγ =−=Γ=Γ=Γ iii                 ...(9) 
(ψ t x, r)

)

really transforms under a spinor representation of  SO(1, 4) but we can think of it 
as an S0 (1, 3) spinor by restricting to the Lorentz transformations in 

( ) (SO SO1 3 1 4, , ⊂  respecting the condition x4 = 0. Dirac's equation for a BPS 
monopole moving in an external field of another BPS monopole may then be written as 

( ){ } .02
1

0 =++⊗Γ+⊗Γ− ⎥⎦
⎤

⎢⎣
⎡ ψµµ∂µ∂ cmgAct     ...(10) 

Multiplying by Γ4 , we get 

( ) .02
1

4
4

24 404 =Γ++⊗Γ−⊗Γ−⊗Γ−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ψµ∂γ∂γ cmgAciDict   ...(11) 

Using  and using equation (9), we get from equation 
(11): 

( 44 4  ,414 gAcD +=Φ==Γ ∂ )

02
1210

021

210
021

0
0

210
021

=+Φ⊗−⊗
−

−⊗
−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψ

σ
σ

∂ cmiD
i

iCt  

or 

.2
1210

021

210
021

0
0

210
021

ψ
σ

σ
ψ

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

Φ⊗
Φ⊗

−
⊗−

⊗
−=

−
cm

iDi
iDic

t
ih

          ...(12) 
The relativistic energy of the particle includes also its rest energy m1c2. This must be 
excluded in arriving at the non-relativistic approximation and we therefore replace ψ  by 
a function ' defined as follows: ψ

htcim
e

2
1−

′=ψψ .         
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Then from equation (12), we have 

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡

Φ⊗
Φ⊗

−
⊗−

⊗
−=′

−
+

210
021

0
0

210
021

 2
1 iDi

iDiccm
t

i
σ

σ
ψ

∂
∂

h  

                 .2
1210

021
ψ ′+

⎥
⎥
⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
cm

Substituting  where ,⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

η
ξ

ψ ξ    ηand  are two-component functions, we obtain 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
Φ⊗−
Φ⊗−

+
⊗
⊗−

=
+−

+

η

ξ
η
ξ

ξσ
ησ

η
∂
∂

ξ
∂
∂

2
1

2
1

21
21

 
2

1

2
1

cm

cm

iDic
iDic

cm
t

i

cm
t

i

h

h
. ...(13) 

From equation (13) we get 

( η∂σξ
∂

)∂
igAiic

t
i +⊗−=Φ⊗+ ⎥⎦

⎤
⎢⎣
⎡

21h      ...(14) 

( ) .2
1221 ξ∂ση

∂
∂

igAiiccm
t

i +⊗−=+Φ⊗−− ⎥⎦
⎤

⎢⎣
⎡
h     ...(15) 

In the first approximation, only the term  is retained on the left hand side of (15), 
which gives 

η2
12 cm

( .
12

1 ξ∂ση igAiicm
+⊗−= )        ...(16) 

Substitution of (16) in to (14) gives 

( ) ξσ
∂
∂ξ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⊗−Φ⊗−+= iAcurlim

g
igAip

mt
i     

12212

12
1 hr

h     

 = ξH          ...(17) ˆ
where ipi

r
=∂  is the momentum of BPS monopole. 

This is Pauli equation for BPS monopoles in moduli space. It has the following extra 
spin contribution in the energy gained by BPS monopole while moving in the field of 
another BPS monopole; 

( .    
12 iAcurlim

gE ⊗−=′ σh )        ...(18) 

This can also be written as 
( )iAcurligiAcurlgE         ⊗′−=⊗=′ σµµ      ...(19) 

where 

12m
g

g
h=′µ          ...(20) 

is defined as Bohr magneton for the system and 
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igg σµµ ′=          ...(21) 

as spin moment of BPS monopole. Consequently, extra-energy term in the Hamiltonian 
may be interpreted as the energy of interaction of the spin-moment of a BPS monopole 
with a vector field, resulting from the space rotation of four-potential . The third 
component of the spin moment operator for BPS monopole may be written as: 

Aa
µ

( ) 3
123 σµ

m
g

g
h=         ...(22) 

the eigen values of which are 

.
12 gm

g
′±=± µh         ...(23) 

 
3. SPIN-ORBIT INTERACTION  
 Let us consider the motion of a BPS monopole in the field of another BPS 
monopole retaining terms of up to those of order v c2 2 . Substituting Ai = 0  and 

E i
t

= h
∂
∂

in equations (14) and (15), we find 

[ ] ησξ ipicE r
⊗−=Φ⊗+ 21        ...(24) 

ξση ipiccmE r
⊗=+Φ⊗−− ⎥⎦

⎤
⎢⎣
⎡ 2

1221 .     ...(25) 

We calculate from (25) the function η  up to terms of first order in ( ) 2
1221 cmE Φ⊗− . 

Substituting the value 

( ξση ipicm

E
cm

r
⊗

Φ⊗−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
12
21

1
12

1 )      

in to equation (24), we find an equation containing only one two-component function: 

( ) ( ) ( ξσσξ ipicm

E
ipim

E rr
⊗

Φ⊗−
−⊗−=Φ⊗+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
12
21

1
12

1
21 )    ...(26) 

which on simplification gives the following expression for energy operator 
(Hamiltonian) in the first approximation; 

( )[ ]ip
cm

i
ip

cm

E
m

H rrhr
⊗Φ⊗∇−Φ⊗−

Φ⊗−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2122
14212

2
12
21

1
12

1ˆ  

 ( ){ }[ ]ipicm

rrh ⊗Φ⊗∇⊗+ 2122
14

σ .     ...(27) 

The expression for Hamiltonian, in second approximation, can be derived by using 
another function  

ξχ  û=  
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the normalization of which up to second order leads to the following value of factor  $u

22
18

2
1ˆ

cm
ip

u
r

−≈  

Using this value of  (and hence of $u χ ), we get the following relativistic expression for 

corresponding Hamiltonian up to terms of order v c2 2 ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+= 22

18

2
1ˆ

22
18

2
1ˆ

cm
ip

H
cm

ip
H

rr

 

     ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ Φ⊗−
−Φ⊗∇+Φ⊗−= 2

12

2
21

212
22

18

2
21

12

2

cm

E

cmm
ip rh
r

 

         ( ){ }[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×Φ⊗∇⊗+ ipicm

rh
2122

14
σ          

IHHHHHH ˆ
0

ˆ
3

ˆ
2

ˆ
1

ˆ
0

ˆ +=+++=       ...(28) 

where  corresponds to the non-relativistic term  of the Hamiltonian, while oĤ IĤ   is the 
relativistic term to the Hamiltonian  various parts of which arise due to different 
relativistic interaction, The quantity  is called contact interaction operator, analogous 
to the term introduced by Darwin 

1Ĥ
(13)  for electronic case.  is the relativistic correction 

term due to the dependence of kinetic energy  on momentum. Finallly,  
2Ĥ

( ){ }[ ]
22

14
211

3
ˆ

cm
ip

H
rr

h ×Φ⊗∇⊗
=

σ
      ...(29) 

is the so-colled spin-orbit interaction operator. 
In a spherically symmetric field 

dr
d

r
r Φ=Φ∇
rr

. 

Substituting this expression in to equation (29), we find the spin-orbit interaction 
operator for the motion of a spin-1/2 particle in a spherically symmetric field:  

( ) ( )
rcm

LS
dr
dH 22

12

ˆˆ
213

ˆ ⊗Φ⊗= ,                  ...(30) 

where  is the orbital angular momentum operator and iprL rr
×=ˆ

iS σh
2
1ˆ =  is the spin 

angular momentum operator. For 
r

g2
−=Φ , equation (30) reduces to  

( )LS
rcm

gH ˆˆ
21322

12

2
3

ˆ ⊗⊗=                 ...(30a) 
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which clearly demonstrates that, besides the contribution of Higgs field, the interaction 
of spin and orbital angular momenta of moving BPS monopole also contributes to the 
energy operator. 
 
4.  PAULI EQUATION FOR A BPS MONOPOLE IN THE FIELD OF ANOTHER 
     BPS MONOPOLE IN MODULI SPACE  
 For analyzing the motion of BPS monopole in the field of another BPS monopole 
with the inclusion of spin effect, let us start with the following Schrodinger equation of a 
spinning BPS monopole in the field of another BPS monopole in moduli space; 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⊗+Φ⊗+∇−

2
1

2
1  ˆ)(412ˆ

12
1

ψ
ψ

ψ
ψ

σ EiLrFr
m

   ...(31) 

 where is $∇ ( )igAip +
r  and spin-orbit interaction ( ) iLrF σ⊗ˆ  will be treated as small 

perturbation. 
 The unperturbed Hamiltonian  

)(412ˆ
12

1
0

ˆ r
m

H Φ⊗+∇−=               ...(32) 

where Higgs potential 

( )
r

gr
2

−=Φ                 ...(32a) 

represents the familiar central force problem for the system of a BPS monopole moving 
in the field of another  BPS monopole and the spin-orbit interaction energy H' is given 
by 

LS
rcm

gH ˆˆ
213

1
22

12

2
'ˆ ⊗⊗= .      ...(33) 

To simplify the above equation, we introduce the total angular momentum as 
SLSSLLJJ ˆˆ2ˆˆˆˆˆˆ ⊗+⊗+⊗=⊗ . 

So the Pauli operator for is given by  $ 'H

( ) ( ) ( ) ( )[ ]pSSpLLPJJ
rcm

g
PH ˆˆˆˆˆˆ

213
1

22
14

2
'ˆ ⊗−⊗−⊗⊗= .   ...(34) 

Thus the Pa li wave equat on becomes u i
( ) ( ) ( )[ ] PWPPHPHPPH ψψψ =+= 'ˆ

0
ˆˆ      ...(35) 

where 

( )
PH

oH
PH ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

0
ˆ0
0ˆ

0
ˆ

Pr
g

m

r
g

m

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−∇−

−∇−
=

41
22ˆ

12
10

041
22ˆ

12
1

   ...(36) 
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and 

P
P ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
+=

ψ
ψ

ψ                  ...(37) 

represents the Pauli wave function. The Pauli wave equation for unperturbed 
Hamiltonian is given as 

( )
( )

( ) ( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+=

−
+

0
0

 0
0
0

0
ˆ0
00

ˆ

ψ
ψ

ψ
ψ

W
H

H
               ...(38) 

or 
( ) ( ) ( )0000

ˆ
±=± ψψ WH        ...(39) 

This equation can be solved by the method of separation of variables by writing the wave 
function as 

( ) ( )φθψ ,,, mlgY
r
rU=                 ...(40) 

where ( )φθ ,,, mlgY  is independent of r (it may be treated as angular function) and the 

radial function ( ) ( )rR
r
rU =⎥⎦

⎤
⎢⎣
⎡  satisfy  the equation 

( ) ( ) ( ) ( )
( )φθ

φθ

,,,

,,,
41122

212
mlgY
mlgY

EmrR
dr
d

rrR
r

Λ
−=Φ⊗−+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

         ...(41) 

with 

2
2

2
11

∂φ
∂

θ∂θ
∂θ

∂θ
∂

θ Sin
Sin

Sin
+=Λ ⎟

⎠
⎞

⎜
⎝
⎛             ...(42) 

and  is defined by equation (32a). Substituting the value of Φ Φ  from equation (32a) in 
to equation (41), we get 
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We introduce the dimensionless variable 
 rαρ =  
 so that  equation (43) becomes 
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where EmEm 18182 −==α . 
Equation (43a ) may  be written as 
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where  

E
m

g
2
1

412
−

=λ .        ...(44a) 

Equation (44) yields the following  energy eigen value for the system of a BPS monopole 
spinning around another BPS monopole; 

2
414

1
n

gm
nE −=             ...(45) 

where n = 0,1,2,... and , the wave functions describing the behaviour of a BPS 
monopole  moving in the field of  another BPS monopole, are simply 

( )ψ± 0

( ) ( )R r Ynl g l m, , ,θ φ  

with  as angular function. Thus the Pauli wave function for the spin-up and 
the spin- down  states would be given as 

(Yg l m, , ,θ φ)
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In the absence of the spin -orbit interaction, both the wave functions correspond to the 
same energy. We can determine the splitting due to spin-orbit interaction choosing a 
representation in which is diagonal $ ′H
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Then the first order perturbation due to the spin-orbit interaction would be given by 
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 or 
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where the plus and minus sign corresponds to 
2
1+= lj  and 

2
1−= lj  respectively.  

After integration, we get 
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where 
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The splitting  of  energy levels corresponding to quantum number n is  
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where En is given by equation (45) and the Bohr radius for the system is given by 

2
1

22
0 gm

a h= .       ...(54) 

Equation (53) gives the splitting of energy levels corresponding to quantum number n for 
j = l + 1/2 and j = l - 1/2, respectively. 
 
 
5. CONCLUSION 

Equation (10) is Dirac’s equation for BPS monopole moving in the field of 
another BPS monopole in moduli space, which on solving gives Pauli’s equation (17) for 
BPS monopoles. Equation (18) describes the extra spin contribution in the energy gained 
by BPS monopole while moving in the field of another BPS monopole, which has been 
interpreted in terms of Bohr magneton and spin moment, through equations (20) and (21) 
respectively. Equation (28) is the relativistic Hamiltonian, for BPS monopole in the field 
of another BPS monopole, different parts of which arises due to different relativistic 
interactions. Hamiltonian of this system has been shown in terms of Higgs potential 
instead of scalar potential in our recent papers in abelian as well as in non-Abelian gauge 
theories(14) due to moduli space approximation. Equation (31) is the Schrodinger for a 
spinning BPS monopole in the field of another BPS monopole in moduli space; spin has 
been introduced in an adhoc manner in this equation. Equation (45) described the energy 
eigen value of this system and equations (46) and (47) described the Pauli wavefunction 
associated with spinning BPS monopoles in moduli space. Equation (53) is splitting of 
energy levels corresponding to quantum number n and equation (54) is Bohr radius for 
interacting BPS monopole in moduli space.  
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