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Abstract 
 

PT symmetric 2-D Henon-Heiles Potentials are studied semiclassically. We generalize the 
definition of Poincare’ surface of sections to identify both regular and chaotic motion in the 
complex phase space. Definition of Lyapunov exponents is extended for complex 
trajectories. Both regular and chaotic trajectories are identified for the complex PT 
symmetric potentials using the new definition of Lyapunov exponents. A new quantization 
condition is introduced and its applicability to complex phase space is discussed. 
 

 
 
 
 
1. INTRODUCTION 

        Henon Heiles potential [1] in two dimensions ( ) )(
2
1 222222 xyxyxV yx ηλωω +++= , 

for real parameters λ  and η has received considerable attention during the last few 
decades from various branches of physics and astronomy due to its applicability in 
studying the motion of stars in the galaxy, molecular vibrations, and the chaotic behavior 
of Hamiltonian systems.   The above system is dynamically nonseparable and 
quasiperiodic. The phase space of this potential consists of both regular, chaotic, and 
mixed regions.  The energy spectrum of this potential has been studied using both 
semicalssical and quantum mechanical methods [2]. Most of the semiclassical methods 
are applicable when the motion is periodic or qasiperiodic.  Two of the semiclassical 
methods that have been successfully applied to obtain eigen energies of the above 
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potential are based on EBK quantization rule using integration along invariant curves on 
Poincare surfaces and caustics. 

Quite recently, quantum mechanical PT symmetric theories associated with the 
complex Henon Heiles potential has been investigated by Bender et al. [3].  Such theories 
seem to possess real and positive spectra.  They have obtained the low lying quantum 
energy levels using higher order perturbation theory.  

In this paper we report the results obtained by a semiclassical study of the complex 
PT symmetric potential  

( ) )(
2
1 222222

1 xyxiyxV yx ηλωω +++= ,      (1) 

and the real potential    

( ) )(
2
1 222222

2 xyxyxV yx ηλωω +++= .     (2) 

where λ and η are real parameters.  
The potential in (2) is studied for comparison purposes.  The outline of the paper is 

as follows.  In section 2, first we study the semiclassical trajectories using Poincare 
surfaces of sections for the real potential  in both real and complex phase spaces.  
Then the complex  potential  is studied in a similar manner.  In section 3, we study the 
complex potential  semiclassically.  In addition, Lyapunov exponents are calculated to 
study the trajectories where Poincare surfaces contain only a very few points in the 
chaotic energy region.  For comparison purposes, Lyapunov exponents are also 
calculated for trajectories obtained under the real potential .  In section 4, semiclassical 
quantization methods are discussed for complex potentials. 

2V
1V

1V

2V

 
 
2. CLASSICAL PHASE SPACE FOR REAL POTENTIALS 
 In this section, we study both the real and the complex phase spaces of the real 2-D 
Henon Heiles potential.  Traditionally, phase space studies are carried out in real space.  
However, in the case of a complex potential, even with a purely real starting point, the 
subsequent trajectory will consist of complex phase space points arising due to the 
complex potential.  With the goal of treating such cases in mind, we extended the 
traditional real phase space to complex phase space by generalizing the coordinates and 
momenta as complex quantities.  Complex phase space inevitably introduces complex 
momenta in the subsequent motion even under the influence of a purely real potential.  
For these reasons it would be interesting to study a real potential in complex phase space 
as well. 
    The concept of surface of section introduced by Poincare many years ago has been 
employed to study the chaotic behavior of dynamical systems by many authors for real 
potentials [4].  Now we extend the concept of Poincare surface of section to the complex 
plane to study chaos in complex phase space.   
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                        Fig. 1 Example of a Poincare surface of section at 0=y  for four trajectories of the real 
                                   potential , all with the same energy 2V 0.5=E , but different initial conditions. 
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                   Fig. 2 Example of a Poincare surface of section at 0=x  for the four trajectories in Fig. 1, 
                              all with the same energy 0.5=E , but different initial conditions. 
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    Real Poincare surfaces for 2-D potentials are usually obtained by solving 
Hamilton’s equations of motion numerically and collecting the points ( , ) when 

and ( , ) when .  By observing the patterns so obtained, it is possible to 
identify whether the behavior of a certain system is largely quasi-periodic or largely 
ergodic.  The Hamiltonian for the potential   is 

x xP
0=y y yP 0=x

2V

( ) ( ) )(
2
1

2
1),,,( 22222222 xyxyxpppypxH yxyxyx ηλωω +++++=    (3) 

 In this study we solve Hamilton’s equations of motion using the above Hamiltonian 
for 7.0=xω , 3.1=yω , 1.0−=λ , and 1.0=η  with the initial conditions , 0=x 0=y  

and obtain Poincare surfaces for both quasiperiodic and chaotic energies.  Figures (1) and 
(2) represent a part of the phase space where the motion is quasiperiodic. For the real 
potential  with parameters 2V 7.0=xω , 3.1=yω , 1.0−=λ , and 1.0=η , Poincare 

surfaces look similar to figures 1 and 2 for all energies 0.10<E  and the motion is 
quasiperiodic. For quasiperiodic motion, studied using Poincare surfaces, semiclassical 
energies can be calculated by the EBK quantization method as described by Noid and 
Macus [4] . We will discuss this in the next section.  

In figures (3) and (4), the motion corresponding to mixed regions is shown. Two of 
the trajectories are chaotic while the other two are quasiperiodic. If the energy is 
increased further, all the trajectories would become completely chaotic. Now let us study 
the same potential in complex phase space to see how the Poincare surfaces look for both 
the quasiperiodic  and the ergodic energies. In order to obtain Poincare surfaces in 
complex phase space, we solve Hamilton’s equations of motion in the complex plane.  As 
in the real case, we collect the points ( , ) when x xP 0=y and ( y , ) when yP 0=x . 
However, , , , and are now complex quantities, and it is possible to identify 
quasi-periodic and ergodic regions by observing various combinations of the real and 
imaginary projections of them.    

x y xP yP

For the real potential in (1), in order to obtain  Poincare surfaces in complex phase 
space, we introduced small complex quantities to the initial values of  ,x y , , and .  

As a result, all points on the trajectory lie in the complex plane.  Figures 5- 8 show 
Poincare surfaces when the system is quasiperiodic while Figures 9-12  are illustrations 
of ergodic  motion of the system. Figures 5,6 and 9,10 look quite similar to those 
obtained for real phase space. It is also found in this study that in both real and complex 
motions, transitions from quasi-periodic to chaotic take place at the same energies. This 
is an indication that, in general, for a real potential, both the real and the real part of the 
complex trajectories behave alike. Figures (7) and (8) show the projections of the 
Poincare surface of sections on the complex coordinate planes of  and for a 
quasiperiodic trajectory.  In a recent, paper [5], it was shown how to obtain quantum 
eigen energies numerically using contours in the complex phase space for 1-D motion. It 
is interesting to find out how to extend the ideas in [5] for 2-D motion using contours like 
those in figures (7) and (8). This will be discussed in section 4. 

xP yP

x y
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      Fig. 3.  Example of a Poincare surface of section at 0=y  for the five trajectories of the real 

                                 potential , all with the same energy 2V 0.11=E , but different initial conditions. 
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                              Fig. 4.  Example of a Poincare surface of section at 0=y  for the five trajectories,  
                                           all with the same    energy 0.11=E , but different initial conditions. 
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Fig. 5.  Example of a Poincare surface of section at 0=y  for the four trajectories of the real potential  2V
            in complex phase space, all with the same energy 0.5=E , but different initial conditions. Only  
            the real projections of the coordinate and momentum are shown here. x xP
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 Fig. 6.  Example of a Poincare surface of section at 0=x  for the four trajectories of the real  potential 
             in complex phase space, all with the same energy 2V 0.5=E , but different initial conditions. 

            Only the real projections of the coordinate and momentum are shown here. y yP
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                   Fig. 7.  Same as Figure 5, but only the projections of the Poincare surface of sections on the 
                                complex coordinate plane of  are shown here. x
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           Fig. 8.  Same as Figure 6, but only the projections of the Poincare surface of sections on the complex 
                       coordinate plane of y are shown here. 
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        Fig. 9.  Example of a Poincare surface of section at 0=y  for the four trajectories of the real potential 

  in  complex phase space, all with the same energy 2V 0.11=E , but different initial 

conditions. Only the real projections of the coordinate and momentum are shown here. x xP
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Fig. 10.  Example of a Poincare surface of section at 0=x  for the four trajectories of the 

real potential  in complex phase space, all with the same energy , but 
different initial conditions. Only the real projections of the coordinate 

2V 0.11=E
y and 

momentum are shown here. yP
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Fig. 11.  Same as Figure 9. but only the projections of the Poincare surface of sections on 
               the complex coordinate plane of  are shown here. x
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Fig. 12.  Same as Figure 10, but only the projections of the Poincare surface of  
              sections on the complex coordinate plane of  are shown here.  y
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3.  CLASSICAL PHASE SPACE FOR COMPLEX POTENTIALS 

In this section, we study the quasiperiodic and ergodic nature of the phase space of 
the complex potential . In the last section, we saw how the projections of Poincare 
surfaces change when the system makes a transition from the quasiperiodic region to the 
ergodic region.   Here we attempt to identify changes that occur in such transitions when 
the potential is complex.  Although, for the real phase space of a real potential, 
quasiperiodicity and ergodicity are based on the existence of invariant tori, it is not very 
clear what analogues to the  invariant tori exist in complex phase space.  However, the 
complex phase space for a 2-D complex potential may be considered as a subspace of a 
real phase space of a 4-D real potential.  Further studies have to be carried out to get a 
clearer picture.  In this study, we used the Lyapunov exponents as a measure of chaos for 
both real and complex potentials. 

1V

 
The 1-D Lyapunov exponent [6]  for both real and complex classical motion is given by, 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

→
∞→ )0(

)(ln1lim
0)0(

d
td

t
L

d
te          (5) 

which describes the asymptotic rate of exponential divergence of two initially close 
trajectories where  is the distance between the two trajectories and  )(td
 

)()()()()( tdPtdPtdytdxtd yx +++=  in the 2-D case.   

Usually, for real coordinates and x y and real momenta and , xP yP  is taken as 
the Euclidean distance. However, for complex coordinates and momenta we generalized 
it as the norm of the complex number (i.e. the distance in the complex plane).  We 
calculated the Lyapunov exponent for both  and  in complex phase space to test its 
validity.  It was found that for the real potential , the calculated values of the 
Lyapunov exponent using the real phase space definition and the complex phase space 
definition are consistent with each other and they agree with  the identification of the 
quasiperiodic and the chaotic regions made by using Poincare surfaces. Later in this 
section we identify the quasiperiodic and the chaotic regions of complex phase space for 
the complex potential  by using the definition of Lyapunov exponents given in (5). 

1V 2V
2V

1V
In order to obtain Poincare surfaces for the complex potential , we solved 

Hamilton's equations in the complex plane.  As in the case of the real potential, we 
collected the points ( , ) when 

1V

x xP 0=y and ( y , ) when yP 0=x  to obtain Poincare 
surfaces.  Figures (13)-(16) show various projections of Poincare surfaces for different 
energies. 
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Fig. 13 Example of a Poincare surface of section at 0=y  of one trajectory of the complex potential  in 1V

complex phase space for the energy 0.6=E , Only the real projections of the coordinate and 
momentum are shown here. Unlike for real potentials, curve is not closed. This energy 
corresponds to the regular motion. 

x
xP
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Fig. 14:  Same as Figure 13. but only the projection of the Poincare surface of sections on the complex 
               coordinate plane of  is shown here. x
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Fig. 15: Example of a Poincare surface of section at 0=x  of one trajectory of the complex potential  in 1V

the complex phase space for the energy 0.6=E , Only the real projections of the coordinate 
y and momentum are shown here. Unlike for real potentials, curves are straight lines, parallel 

to the real Y axis. For all energies less than 6.0,  Poincare surfaces of section at  look 
similar to this when the motion is regular. 
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Fig. 16:  Same as Figure 13. but only the projection of the Poincare surface of sections on the complex 
                     coordinate plane of y  is shown here. 
 

Figures (13) - (16) correspond to the quasiperiodic case while Figures (17)-(19) 
below correspond to mixed states of regular and ergodic motions.  
 
 

 12



A. Nanayakkara and C. Abayaratne /Sri Lankan Journal of Physics,  Vol.3 (2002) 1-16 

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
8.4130

8.4132

8.4134

8.4136

8.4138

8.4140

8.4142

8.4144

Im
(P

X)

Re(X)

 
Figure 17:  Example of a Poincare surface of section at 0=y  of one trajectory of the complex potential 

 in the complex phase space for the energy 1V 0.59=E , and the initial condition 

.  Only the real projections of the coordinate and momentum are shown here. 

Energy 

65.0=xf x xP
E  and  here  corresponds to regular motion and the calculated Lyapunov exponent 

is negative. The Poincare surface corresponding to 
xf

0=x  looks similar to Figure 15. 
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Fig. 18:  Example of a Poincare surface of section at 0=y  of one trajectory of the complex potential  

in the complex phase space for the energy 
1V

0.59=E , and the initial condition .  Only 

the real projections of the coordinate and momentum are shown here. Energy 

7.0=xf
x xP E  and  

here  corresponds to chaotic motion and the Lyapunov exponent is now positive. The Poincare 
surface, obtained numerically, corresponding to 

xf

0=x  does not contain any points for these 
values of E  and  . xf
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Fig. 19 Example of a Poincare surface of section at 0=y  of one trajectory of the complex potential  

in the complex phase space for the energy 
1V

0.59=E , and the initial condition . Only 

the real projections of the coordinate and momentum are shown here. Energy 

75.0=xf
x xP E  and  

here  corresponds to regular motion and the Lyapunov exponent is negative. The Poincare surface 
corresponding to  looks similar to Figure 15. 

xf

0=x
 
 
       It is evident from these figures that from the projections of Poincare surfaces, it is 
hard to distinguish between the quasiperiodic and ergodic regions.  The main reason is 
that when the energy corresponds to chaotic regions, the number of points in the Poincare 
surfaces, generated numerically, are restricted to a very few or none.  It appears as if the  
trajectories occupy the entire complex phase space when the motion becomes chaotic and 
the trajectory has to be monitored for a very long time to collect a sufficient number of 
points for the desired Poincare surface.  This is not numerically feasible due to the 
generation of round off errors. 
 

However, it is found that Lyapunov exponents based on (5) in the complex phase 
space can be used to identify both quasiperiodic and chaotic regions correctly.  As an 

example, for  and 0.59=E 68.0=xf  where
YX

X
x PP

Pf 22

2

+
= at 0=t , the Lyapunov 

exponent . This  corrsponds to regular motion and projection of the 
corresponding Poincare surface is shown in figure (17). However, when 

and, , the Lyapunov exponent becomes 

00018.0−=eL

0.59=E 7.0=xf 000856.0=eL  . This 
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corresponds to chaotic motion (Figure (18)). If we increase   further to the value 
while keeping 

xf
75.0 E fixed at , the motion becomes regular again giving the 

Lyapunov exponent . We found that in most of the cases, when the 
Lyapunov exponent became positive, the Poincare surfaces did not have any points . 

0.59
00017.0−=eL

  
 
 
4. SEMICLASSICAL QUANTIZATION 

When the system is quasiperiodic for real potentials, the semiclassical energy 
eigen values can be found by using Poincare surfaces [4].  The quantization conditions 
are 
 

∫=⎟
⎠
⎞

⎜
⎝
⎛ +

xC
xdxpn h

2
12 1π   )0( =y      (5) 

 

∫=⎟
⎠
⎞

⎜
⎝
⎛ +

yC
ydypn h

2
12 2π   )0( =x      (6) 

 
where curves and are closed curves in Poincare surfaces of sections  and 

 respectively.  In  [4], Noid and Marcus obtained the semiclassical energy eigen 
values for the potential  for various values of the parameters in the potential and found 
that these values agree with the exact quantum mechanical eigen energies for the system. 

xC yC 0=x
0=y

2V

 
In section 2. we saw that when the classical motion is quasiperiodic, the Poincare 

surfaces contain closed curves while when the motion becomes chaotic, these closed 
curves no longer exist.  In this study, we extend the idea of Noid and Marcus to complex 
Poincare sections to obtain a quantization condition in the complex plane.  
 

Instead of using the closed curves  vs  or  vs  as in Figures (1) and (2) 
with the equations (5) and (6), we introduce the new quantization condition as 

Xp x Yp y

 

 ∫=⎟
⎠
⎞

⎜
⎝
⎛ +

xC
xdxpn h

2
12 1π   )0( =y      (7) 

 

∫=⎟
⎠
⎞

⎜
⎝
⎛ +

yC
ydypn h

2
12 2π   )0( =x      (8) 

 
where now the curves and are closed contours in the projections of Poincare 
surface of sections  and 

xC yC
0=x 0=y  on the complex coordinate planes of  and x y  

respectively and the integrals are now complex contour integrals rather than line integrals 
as the case in Noid & Marcus's work . 
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In this work, we calculated the semiclassical energy eigen values using both Noid 
and Marcus’s method and our generalized method using contour integrals for the real 
potential  and found out that both methods produce the same results up to the accuracy 
of the numerical methods used. 

2V

As it is evident from figures (13) - (16), in contrast to the closed curves obtained for 
a real potential, these projections of Poincare surfaces represent open curves with only a 
few points.  As a result, the contour integral method or the Noid and Marcus’s method 
cannot be directly applied for calculating semiclassical eigen energies for complex 
potentials.  Alternative methods for obtaining semiclassical eigen energies are currently 
under investigation. 
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