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Abstract 
 

We develop a method for calculating the polarizability of a spherical nano particle by 

taking in to account the temporal and spatial dispersion where dispersion due to the 

Landau damping.  To describe these phenomena, we developed analytical theory based 

on local random-phase approximation. Our theory is very general in the sense that it can 

be applied to any material which can be characterized by a bulk dielectric function of the 

form ),(  k . The theory is applied to calculate the polarizabilities of dielectric and 

metallic nanospheres. 
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1.  INTRODUCTION  

 Recently, there has been explosive growth of nanoscience and nanotechnology. 

Nanosystems possess unique properties different from those of macroscopic materials 

when characteristic lengths govern their properties. Therefore, the spatial dispersion 

becomes much more important where the characteristic size of the particle or distances 

between them becomes comparable to the characteristic scale of the system
1-5

. One 

example of such a scale is the lattice constant in metals which is on the order of the 

electron wavelength at the Fermi surface 1~F Å. Another important scale in 

nanooptics: which is a modern branch of optical science that explores how optical 

frequency radiation can be confined on the nanoscale, i.e.,1-100 nm (much smaller than 

the optical wavelength) is the Debye screening radius )6/( 2neEr FhD  *
 ( or 

Thomas-Fermi screening radius) where h  is the background dielectric constant of the 
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metal that is due to the core (valence) electrons and ion motion (phonons), n is the 

concentration of electrons in c.g.s units and FE  is the electron Fermi energy 
*22 2/ mkE FF  , where 3/12 )3( nkF   is the electron wave vector at the Fermi surface 

and *m  is electron effective mass in the metal.  

Using the Bohr radius, 2*2 / ema hB   and Fk , one can rewrite Dr  for most 

metals, including noble metals, as 1)(109.2 6/15  nrD  Å.  One of the other length is 

the correlation length, cl : that an electron at the Fermi surface travels during a period of 

the optical radiation, is another important scale for optical interactions in a metal system, 

which is on the order of /~ Fv , where Fv  is the electron speed at the Fermi surface; 

for metals 810~Fv cm s
-1

 and 1510~ s
-1

 is the optical frequency. This yields an 

estimate 1~cl nm which is the largest spatial scale compared with the other two scales. 

Therefore, when a characteristic size a of the nanosystem becomes small, it may become 

comparable to cl  which will make important for the nonlocality in the optical responses 

of the electron system. Therefore, macroscopic description of nanostructured system 

may not be applicable even on the order of magnitude. 

It is very clear now that the optical properties of nanospheres, whose size ~ 10 

nm or less, are very different from those of the corresponding bulk materials
3,6

. This is 

due to the surface effect: large surface to volume ratio. One of the consequences of such 

a small size of the system is that the electric field E magnetic induction B, magnetic 

field H and the displacement vector D are related by a nonlocal relationship instead of 

the usual local relation. Assuming that fields are weak enough that displacement vector 

D and magnetic induction B can be obtained by perturbation theory therefore, one can 

obtain integral linear-response relation in terms of the corresponding fields (i.e., 

relations between D and electric field E, and B magnetic filed H) 

rrErrrD   




dttttdt
v

),( ),(),(                       (1) 

rrHrrrB   




dttttdt
v

),( ),(),(            (2) 

here ),( tt rr  (dielectric function) and  ),( tt  rr  (magnetic permeability) 

denote the response functions in space and time. The displacement D at time t depends 

on the electric field at time t previous to t (temporal dispersion or frequency dispersion). 

In addition to that the displacement at point r also depends on the values of the electric 

field at neighboring points r' (spatial dispersion). A spatially dispersive medium is 

therefore also called a non-local medium. This effect can be observed at interface 

between different media or in metallic objects with sizes comparable with the mean-free 

path of electrons. In most cases of interest the effect of the spatial dispersion is very 

week, therefore we can assume that the materials of the system are isotropic. Otherwise, 

both   and μ would have been tensors, which would make no principal difficulty but 

make formulas somewhat more complicate. However, on the other hand temporal 

dispersion, is a widely encountered phenomenon and it is important to take it accurately 

into account. 

As we discussed above relations (1) and (2) are non-local both in space and time. 
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However, one can use mathematically equivalent description in Fourier domain which is 

local, 

    ),(),(),(           ),,(),(),(  kHkkBkEkkD                     (3) 

 Here we have introduced the corresponding arguments in Fourier domain which 

is wave vector k  and frequency  . Therefore, the Fourier transform of the electric field 

is defined as, 

dtde ti
rrEkE

rk


 )(),(),(                      (4) 

and one can get similar expressions for other quantities. 

 

 

2.  MODEL AND EQUATIONS 

 

We will employ local random-phase approximation (LRPA): suppose that locally 

the electron Fermi liquid everywhere has the same properties as in the bulk metal, a 

microscopic approach based on random-phase approximation (RPA)
7
 where the 

dielectric function ),(  k  possesses both the temporal and spatial dispersion, and 

dissipation is due to the Landau damping
8
. Earlier, approach based on RPA

9
 was 

developed for somewhat large radii, Dra  . In contrast, our theory is valid for the 

intermediate scale, Dc ral  , which is of high importance for nanooptics. Such a 

nanolocalized fields are due to the interaction processes (oscillation of polarization 

charges) between electromagnetic radiation and conduction electrons at metallic 

interfaces or in small metallic nanostructures, leading to an enhanced optical near field 

of sub-wavelength dimension. Such oscillations on the nanoscale are called surface 

plasmons. 

In LRPA, we consider electrons of the metal as a degenerate electron plasma that 

possesses dissipation due to Landau damping and whose dielectric function depends on 

both   (temporal) and k (spatial dispersion). Well known Lindhard formula
10

 is one of 

the closed solutions in the theory of the Fermi systems that explicitly gives the nonlocal 

dielectric response function (longitudinal) ),(  k . 
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where p  is plasma frequency which is define as 
*
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.   Note that ),(  k  has a non-zero imaginary part, which describes 

optical losses, only when .Fkv  These optical losses can be connected to the 

excitation by a field of incoherent electron-hole pairs. This phenomenon is called 

Landau damping, which is described by Eq (5). The Landau damping actually is 
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dephasing, where coherent field oscillations are transformed into incoherent electron 

hole pairs, but the total energy of the system is not changed. Landau damping is fulfilled 

when the size of the system is comparable to or less than the correlation length, cl then 

condition, Fkv , is satisfied. In this limit, the expression, Eq. (5) for the longitudinal 

dielectric function can be written as,  

 .
2

1
3

),(
22

2

22

2


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
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i
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k
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                                 (6) 

Considering LRPA, an external field penetrates a metal mainly to a depth on 

order of 
pFD vr /~ . In a real metal Dr  is very small ( 1~  nm) hence the contributing wave 

vectors 
1

~


Drk  are large. For such a k  the Eq. (5) has an imaginary part, 
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)],(Im[ FDp
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          (7) 

This has the same order of magnitude as )],(Re[  k . This effect (Landau damping) is 

not a small effect even at its onset. As explicitly demonstrated in Eq. (7) it is obvious 

that the relaxation and losses in the electron system comes only with a strong spatial 

dispersion (dependence on k ). The Landau damping and the spatial dispersion are 

highly important for the nanoplasmonics, because they are the most pronounced for the 

low-frequency. In particular, small-size range of parameters where the nanoplasmonic 

effects are strongest and most interesting. Even though these phenomena are very 

important for nanooptics, it is very difficult to take into account because the expression 

for the dielectric response is relatively complex in the k space [see Eq. (5)]. Note that the 

boundary conditions at the surfaces of the nanostructure are to be imposed in the real r 

space. 

In the limit  Fvk /  and taking 1h , from Eq. (6) we get the inverse 

dielectric function, 1),(  k  as, 

5

1

/1

1
),(

ki
k





         (8) 

where 
54 /9 Fp v  . Eq. (8) is identical to the corresponding result of the random phase 

approximation (RPA), which is expected to work well in our case when p  and 

Fkk  . This formula satisfies general properties of the spatial dispersive dielectric 

response, in particular, it describes Landau damping for Fvk / . 

Let us assume that an external electric field zE ˆ)(0 E  is applied to a 

nanosphere whose radius is a  and material is describe by longitudinal dielectric 

function ),(  k . Here retardation is neglected: size of the nanosphere is much smaller 

than the wavelength of the excitation field. The potential   and the radial component of 

the displacement vector rD  for ar   is given by 

   coscos
20

r

p
rEr           (9) 
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     cos
2

cos
30

r

p
rE  rErD rr        (10) 

The resulting equation for optical polarizability at ar   can be written as   0/ Ep , 

where      ]1/1[3

0  aEp is the induced dipole moment of the sphere and   

is the angle between the vectors r  and E . Then the final results for the    including 

nonlocal effects is given by
3
. 
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In the local limit, i.e.,     ,k ,  
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Then    reduces to well known expression
11
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3.  NUMERICAL RESULTS AND DISCUSSION 

 

The inverse dielectric function, 1),(  k  is shown in Figure 1 for 

3 and  2 ,1  eV. Here we can clearly see the significance of the  ),(Im  k , which is 

same order of magnitude as  ),(Re  k  (not shown in the graph). 

 
Figure 1: Absolute value of the imaginary part of the inverse dielectric function 

1),(  k  plotted 

against wave vector k  for 3 and  2 ,1  eV,  24.9p eV and 
610Fv  m s

-1
. 

 

 



Prabath Hewageegana  /Sri Lankan Journal of Physics, Vol. 13(1), (2012) 41-47 
 

 

46 

The results of numerical computation from Eq. (12) of the imaginary part of the 

normalized polarizability for silver nanospheres of radii 2.5 nm, 5 nm, 10 nm, 50 nm and 

100 nm are shown in Figure 2. Our numerical calculation qualitatively agrees with Ref. 

[3], it indicates that the essential physics of the system is contained in our simple 

treatment even for particle radii as small as 2.5 nm. The slight variation in the peak 

position is presumably due to the different formalism of the used dielectric function
3
. 

Toward the smaller particle size the peak position has been changed significantly. This is 

due to the Landau damping which is fulfilled when the size of the system is comparable 

to or less than the correlation length, cl , then condition,  Fvk /  is satisfied. 

Since we used more general dielectric function for the model, two major 

advantages of the results can be seen: (a) they can be applied to various different 

materials and (b) the model is capable of giving quantitatively correct results as shown 

in Figure 2. Farther, one can easily conceder the higher order terms of the 1),(  k  in 

our formalism to show that this agreement would continue for even smaller particles as 

well.  Another advantage of our theory is that one can use this model to study the spatial 

variations of quantities like electric field, polarization, induced charge density, etc., 

within the sphere in a simple analytical way. 

 

 
Figure 2: Variation of the imaginary part of   3/ a  for silver spheres of radii 2.5 nm, 5 nm,    

10 nm, 50 nm and 100 nm. Here  24.9p eV and 
610Fv  m s

-1
. 
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To briefly summarize the main results, we have developed LRPA theory to 

describe the polarizability of nanosize meatal sphere including nonlocal effects. We hope 

that our work will be useful in studying the optical properties of nanoparticles of other 

materials (such as semiconductors, ionic crystals, etc.) which we did not consider here.  

In particular, there are two areas of considerable current interest where a theory like 

LRPA can play a significant role:  It is known that absorption by phonons might be 

responsible for the anomalously large absorption of infrared radiation by very small 

metallic particles, one could try to see whether LRPA theory would explain this large 

absorption by adding a phonon term to the dielectric function, Some of the theories of 

the surface-enhanced Raman scattering are based on an enhancement of the effective 

polarizability due to image effects. As a better approximation, one can assume the 

molecules to be dielectric spheres and our expressions for    can provide a simple 

but accurate way for taking into account both the size as well as the frequency 

dependence of the polarizability. 
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