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Abstract 
 

Cloud-to-ground lightning discharges in 2D and 3D domains were simulated using a stochastic 

dielectric breakdown model. The dependency between fractal dimension of the discharge 

patterns and the power of the local electric field η was critically evaluated. An exponential 

decrease in fractal dimension was observed as η increases. Fractal dimension of simulated 3D 

discharge patterns and 2D images of lightning discharges were compared by taking projections 

of simulated patterns. Discharge patterns similar to actual lightning were obtained when η ≈ 5.2. 

Influence of ground objects on simulated lightning discharges was also studied by introducing 

additional boundary conditions to the ground plane.  It was observed that pointed structures on 

the ground have a higher probability of attracting simulated lightning discharges. An extension 

was introduced to dielectric breakdown model to simulate the development of upward 

connecting positive leader discharges that occur during the decent of a downward moving 

negative leader. It was found that the height of the stepped leader tip above the ground (at the 

time when the upward connecting leader initiation occurs) is dependent on the initial breakdown 

voltage threshold. The height of the point of interception was found to decrease exponentially as 

the breakdown threshold is increased. 
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1.  INTRODUCTION  

 Electrical discharges that occur during the breakdown of all gaseous, liquid and 

solid dielectrics are recognized as having a strong tendency to develop into complex 

branched structures. Various categories of discharges such as lightning, surface 

discharges, and treeing in polymers occur as trajectories of luminous filaments, which 

often branch into intricate patterns. Although there are fundamental differences between 

discharge mechanisms of those various discharge types, global structure of the branched 

tree-like patterns often shows a close structural similarity within a large variety of 

discharge types
1
. 
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 Due to the large number of highly non-linear phenomena that occurs from atomic 

scale to macroscopic scale during the breakdown process, providing an adequate 

description about the formation of these complex geometrical structures with the 

classical theory of discharges has been a much difficult task, and it still remains 

unaccomplished, as up to today
2
. 

 

 However, the theory of fractal geometry introduced in the late 1970’s by Benito 

Mandelbrot
3
 provided a means of characterizing variety of complex patterns that 

encounter in nature. Mandelbrot brought up the geometrical difference between 

Euclidean shapes and so called fractals, and categorized complex, self-similar natural 

structures such as clouds, trees, mountain ranges, river networks as fractal shapes having 

non-integer fractal dimension. The concept fractal dimension could be used to 

quantitatively characterize and classify random complex patterns, and served as a means 

of categorizing an object as a fractal. 

 

 Since the theory of fractals has been popularized, many attempts have been made 

to relate the branching self-similar patterns observed in electrical discharges with 

fractals. Niemeyer et al.
1
 presented evidence for fractal properties of branched 

discharges by analyzing simulated surface discharge patterns. Their analysis suggested 

that surface discharges are indeed fractal structures with average fractal dimension 

7.1D . By analyzing a set of lightning photographs, Tsonis
4
 reported that the average 

fractal dimension of projected images of lightning flashes is 34.1D .  

 

 With the confirmation of the fractal nature of electrical discharges, stochastic 

models were introduced to describe the formation of branched discharge patterns. By 

combining the potential theory with probabilistic selection, these models were able of 

produce complex branched structures that resemble actual electrical discharges. The 

work presented in this paper utilizes a stochastic model to simulate the formation of 

lightning discharges in both two dimensional (2D) and three dimensional (3D) domains. 

The standard model
5-7

 was extended to simulate the interception of downward moving 

negative leader channel and upward connecting positive leader discharges. Using the 

simulated data, the fractal dimension of the simulated lightning channels is investigated. 

 

2.  METHODOLOGY 

2.1 Previous work 

 Niemeyer et al.
1
 introduced Dielectric Breakdown Model (DB model) to explain 

fractal properties observed in surface discharges in compressed SF6 gas. The basic 

assumption of their stochastic model was that the discharge pattern exhibits fractal 

scaling if two mathematical conditions are satisfied. 
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 Probability of growth at any point of the discharge is proportional to a power of the 

local electric field at that point.  

 The discharge structure is equipotential. i.e., the voltage gradient along the structure 

is zero.  

 Niemeyer et al. studied their model via computer simulations in a 2D square 

lattice under 2D Laplacian field, and obtained highly branched structures similar to 

experimental surface discharge patterns when the power (η) is set to 1. They estimated 

the fractal dimension of their simulated discharge patterns to be 1.75 ± 0.02 which was 

in good agreement with the value 1.7, suggested by fractal analysis of experimental 

surface discharge patterns. They further studied the effect of the values of η other than 1 

and observed that the density of the branching in the discharge pattern decreases as η 

increases. i.e., the fractal dimension decreases as η increases. 

 Sanudo et al.
5
 extended the two dimensional DB model to simulate lightning 

discharges in three dimensions and estimated the average fractal dimension in 3D as 

well as the average fractal dimension of 2D vertical projections of discharge patterns. 

They studied the relationship between η and the fractal dimension and reported that 2D 

projection of simulated lightning discharges with η ≈ 6 has the average fractal dimension 

of 1.34; the value observed in actual lightning photographs.  

 Mansell et al.
8
 also extended the DB model to a 3D Cartesian geometry to 

simulate lightning discharges. In addition, they integrated the DB model with a 

numerical cloud model to study lightning behaviour during thunderstorms.  

 Kim et al
9
. proposed a novel extension to the DB model in order to animate 

sustained electrical arcs, by assuming the existence of residual positive charge along 

discharge channels. With their improvements, they were able to simulate subsequent dart 

leaders that follow the same general path as the stepped leader in lightning flashes. 

 In a more recent work by Kim et al.
10

 a faster; more memory efficient algorithm 

was introduced to simulate electrical discharges. Their algorithm was structurally similar 

to DB model, with the exception that the discharge structure is treated as a perfect 

insulator, instead of a conductor. With this modification, they were able to replace the 

most time consuming numerical step of DB model; solving Laplace equation under 

finite difference method; with a fast analytical method. They compared the performance 

of their algorithm with original DB model algorithm and reported that in general their 

algorithm is 651 times faster than the original DB model. 
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2.2 Dielectric breakdown model 

 Lightning discharge simulations presented in this paper are based on a 

generalized version of the original Dielectric Breakdown Model developed by Niemeyer 

et al. [1]. DB model is defined in discrete coordinate space. Figure 1 shows a sample 

square lattice (in its initial state) used to produce lightning discharge patterns in 2D. 

Discharge pattern is indicated by black circles connected with thick lines. Dashed lines 

which connect each discharge point (black circle) with a neighboring charge-free lattice 

point (white circle) represent possible breakdown links.  

 

 

 

 

 

 

 

 

Figure 1: Initial charge configuration for producing downward moving negative leaders. 

 Each lattice point has an electric potential value  associated with it. The 

potential of the lattice points in the upper boundary of the lattice (which simulates the 

cloud base) are fixed to  = Ucathode, while lattice points in the lower boundary (which 

simulates the ground plane) are fixed to  = Uanode. As for the left and right boundaries, 

Neumann boundary conditions )0/(  x  are imposed. Potential of the remaining 

charge-free lattice points (white circles) are defined by the discrete Laplace equation 

under the boundary conditions imposed by the cloud base, ground plane and the 

discharge structure developed up to that time. 

 DB model is an iterative process. The process starts with the initial boundary 

conditions consist of the negative cloud base and the positive ground plane. The central 

lattice point of the upper boundary is capable of initiating the discharge. During each 

iteration of the algorithm, a new breakdown link (dashed line segment) is chosen and 

added to the existing discharge pattern. The new breakdown links are chosen randomly 

according to a weighted probability function as described below. 

 Let P denote a lattice point connected to the discharge pattern (black circle) 

while Q represents an adjacent charge-free lattice point (white circle). Magnitude of the 
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component of electric field vector (local electric field) at P pointing in the direction of 

PQ is approximated by;  

| |P Q

PQE
d

 


 (2.1) 

where d is the length of a dashed line segment (for simplicity, d is set to 1). 

 The probability of choosing a particular PQ dashed line segment is proportional 

to a power of the local electric field associated with it.  

 PQ PQP E


  (2.2) 

 The above probability can be normalized to a value between 0 and 1 by dividing 

with the sum of probabilities corresponding to all possible breakdown links extend from 

point P; 
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 When a new breakdown link is selected and a new lattice point is connected to 

the discharge pattern, the electric potential Q of the new discharge point Q is set to 

Ucathode. 

 Each time a new breakdown link is chosen, the newly added discharge point 

becomes part of the boundary conditions. Therefore, potential at charge-free lattice 

points have to be recalculated under the new boundary conditions by solving Laplace 

equation; 

0  (2.4) 

 Since Laplace equation is linear, the value of  at any point is the average of 

those around that point. Thus in a discrete lattice structure, potential at any lattice point 

is the average potential of its nearest neighbors. Therefore, discrete form of equation 2.4 

can be represented as, 

 1,,1,,,1,,1,,,1,,1,,
6

1
  kjikjikjikjikjikjikji   (2.5) 

where i, j, k represent discrete lattice coordinates. 

 To increase the speed of convergence, the system of equations generated by 

equation 2.5 was solved by the technique successive over-relaxation
11

. Given the 

appropriate boundary conditions, potential of the lattice points are computed by iterating 

equation 2.6 over the lattice (except at boundaries where the potential is fixed) until 
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convergent results are obtained.  
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 Here, the superscript (n) denotes the current iteration cycle while (n-1) denote the 

previous cycle. The over-relaxation parameter ω (1 ≤ ω ≤ 2) controls the speed of 

convergence. Sanudo et al.
5
 states that ω ≈ 1.6 considerably increases the speed of 

convergence of the whole process. Therefore in this study, a value of 1.6 was used for ω. 

 The potential of each lattice point in a 2D lattice can be calculated in sequence 

by advancing from the left to the right of the lattice in each row and from bottom to top 

in successive rows. For a 3D lattice the scan in XZ plane should be repeated for each 

discrete value of Y coordinate by advancing sequentially in the Y direction. A complete 

scan of the lattice in the above manner constitute one iteration cycle. Iterative scanning 

process is continued until residual values δi,j,k of all lattice points become less than a 

threshold value m. To obtain reasonable convergent results, value of m was chosen such 

that the residual values are reduced to a magnitude of 0.1% of the maximum boundary 

potential.  

 In order to increase the execution speed, equation 2.6 was first solved for a 

subsystem of 202020 cube, centered at the newly added discharge point. When the 

0.1% convergence criterion is reached for this subsystem, the program proceeds to solve 

the total system consisting of the entire lattice. The above computational trick was based 

on the observation that the changes in the potential field after the addition of a new 

discharge point are particularly strong in the surrounding of the new point, while the 

effect reduces rapidly with distance. In this study, all 3D simulations were executed for a 

100100100 cubic lattice due to execution speed limitations. 

 

2.3 Simulating upward connecting leaders 

 During real lightning flashes, when the stepped leader has approached within 15 

to 50 meters of the ground, the electric field intensity at the ground becomes sufficient 

enough to initiate one or more upward connecting positive leaders which will propagate 

upwards to meet up with the oncoming negative leader. In this study, DB model was 

extended to account for the upward connecting positive leaders. 
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 Original DB model introduced by Niemeyer et al.
1
 only allows unidirectional 

discharge propagation. However, the generalized DB model presented in this paper 

implicitly allows the propagation of both negative and positive discharges. The obvious 

reason for this behavior is that the probability of growth is related to the magnitude of 

the local electric field. Therefore, independent of the type of the discharge, the pattern 

will tend to develop in the directions with higher potential gradient. That is, negative 

discharges (which carry negative charge and have lower potential) tend to propagate 

towards regions of higher potential while positive discharges (which carry positive 

charge and have higher potential) tend to propagate towards regions of lower potential. 

 When generating negative discharges, the central point of the upper face of the 

lattice was chosen as the only discharge initiation point, and the initial set of possible 

breakdown links were extended from that point. Similarly in order to simulate positive 

discharges, one or more lattice points comprising the ground plane have to be designated 

as discharge initiation points, and initial set of possible breakdown links have to be 

extended from those points. Once the initial set of possible breakdown links are 

specified, positive discharges will propagate in the same step-by-step manner as the 

negative discharges. 

 In the original DB model, discharge initiation phase is not explicitly modeled. 

During the first iteration of the algorithm, it is assumed that the conditions for discharge 

initiation have already been satisfied by the initial set of possible breakdown links. 

However in order to simulate the development of upward connecting positive leaders, an 

explicit initiation condition for positive discharges have to be enforced. 

 Figure 2a shows the initial state of a 2D sample lattice. All lattice points on the 

ground layer (anode) are connected to adjacent charge-free lattice points on the layer 

above to form the initial set of possible breakdown links for positive discharges 

(indicated by gray colored dashed lines). However, not all those links are capable of 

being selected as a discharge link. For an initial possible breakdown link to be chosen as 

a discharge link, local electric field associated with the link must exceed a threshold 

value Ebreak. During each iteration, the algorithm scans through the initial set of possible 

breakdown links to check whether the local electric field associated with any of them 

have exceeded Ebreak. If such links exist, one of them will be chosen according to 

equation 2.3 and added as the first discharge link of a new upward connecting leader 

(e.g. AB). After the first discharge link of a new upward connecting leader is formed, 

that leader is allowed to develop according to the same propagation rules as the negative 

discharge. Note that the threshold Ebreak only influences the selection of initial possible 

breakdown links. Possible breakdown links formed later in the process are only 

subjected to the selection rule, equation 2.3. 

 Propagation of the stepped leader (negative discharge) is the same as in the 

original DB model. During each iteration of the algorithm, a new negative discharge link 

is chosen and added to the stepped leader. However during initial iterations, upward 
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connecting leaders may not be created since the local electric field near the ground plane 

is not sufficient enough to exceed Ebreak. But as the stepped leader approaches the 

ground, electric field near the ground plane will gradually intensify; and at some point, 

local electric field associated with one or more possible breakdown links will exceed 

Ebreak, initiating upward connecting positive leaders. During the time span of the 

simulation, more than one upward connecting positive leader may develop. Simulation 

is continued until the downward moving negative leader intercept with one of the 

upward connecting positive leaders, forming the complete lightning path. Figure 2b 

shows the lattice configuration after several iterations. At the given time, stepped leader 

has propagated half way down the lattice, and two upward connecting positive leaders 

have initiated from AB and CD. 

Figure 2: A sample 2D lattice showing upward connecting positive leader development                  

(a) Initial charge configuration (b) Configuration after several iterations. 

 

2.4 Estimating fractal dimension 

 In this work, simulated electrical discharges were structurally characterized by 

calculating the associated fractal dimension. There are number of different methods of 

calculating fractal dimension of electrical discharges
6
. In this work, method of 

correlation function was employed since it is guaranteed to provide distributions with 

smaller standard deviations of the fractal dimension
12

.  

 Method of Correlation function gives a statistical measure for fractal dimension 

based on pair-wise distance between a set of random points.  
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Consider a set of N points in an m-dimensional space; 

 )()2()1( ,,........., m

iiii xxxx   (2.8) 

where i = 1,2,3,…, N 

Correlation integral C(ε) for the given set of points is defined as; 
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where H is the Heaviside step function; 
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 In literal terms, correlation integral is the average no of pair of points where the 

distance between them is less than ε. 

 As the number of points tends to infinity, and the distance between them tends to 

zero, the correlation integral for small values of ε will take the form; 

DC  )(  (2.11) 

where D is known as the correlation dimension. 

 If the number of points is sufficiently large and evenly distributed, gradient of the 

log-log plot of the correlation integral versus ε will yield an estimate of D.  

 

3.  RESULTS AND DISCUSSION 

3.1 Dependency with η 

 

 The exponent η in DB model parameterizes the relationship between the local 

electric field and the probability of growth of the discharge pattern. The overall 

appearance of the pattern and the fractal dimension is strongly related to the exponent η 

[7]. The following study was carried out in order evaluate the effect of η on the shape 

and dimension of 2D and 3D discharge patterns. For simplicity, default potential values 

Ucathode=0 and Uanode=1 were chosen for the cloud base and the ground plane 

respectively.  
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Figure 3: Simulated 3D lightning discharge patterns when (a) η=1, (b) η=3 and (b) η=6 

 

 Figure 3 shows lightning discharge patterns for three different η values. It can be 

seen that as η is increased, discharge patterns become sparser with reduced side 

branching while for lower values of η, “bush” type densely packed discharge patterns 

can be observed. 

 

 In order to characterize the fractal nature of discharges, fractal dimension of 

discharge patterns corresponding to different values of η were estimated. To reduce 

statistical fluctuations, for each value of η, 10 separate simulations were taken and the 

average fractal dimension D was calculated. The average fractal dimension values for 

2D and 3D configurations are shown on Figure 4. The error bars on the figure represent 

the standard deviation of the measurements. 
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Figure 4: Variation of fractal dimension with η for simulated discharges (a) 2D (b) 3D 
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DP = 1.772 - 0.261Ln(η)
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 The relationship between fractal dimension D and η can be expressed by 

following expressions. 

 

2D case: )ln(291.0687.12 DD  (3.1) 

 

3D case: )ln(487.0393.23 DD  (3.2) 

 Tsonis
4
 reported the average 2D fractal dimension estimated from actual 

lightning photographs to be 34.1D . Value of η that produces simulated 2D lightning 

discharges with the same D  was found to be η  3.3. 

 

 In analyzing actual lightning discharges which are in 3D domain, observations 

are done through 2D lightning photographs. Therefore, to compare simulated 3D 

lightning discharges with actual discharges, vertical projections of 3D lightning patterns 

were taken on to either XZ or XY plane and fractal dimension of the projected patterns 

were estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Variation of fractal dimension with η for simulated discharges (projected). 

 

 The variation of the average fractal dimension of the projected patterns PD  

obtained for various values of η are shown in Figure 5. Similar to the average fractal 

dimension, exponential decrease in the fractal dimension can be seen with the projected 

pattern generated with different η values. The relationship between PD  and η can be 

given by; 

 

3D projected case: )ln(261.0772.1 PD  (3.3) 
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 The average fractal dimension observed for real lightning discharges can be 

obtained through simulation when η = 5.2. This value is close to the value reported by a 

similar study carried out by Sanudo et al.
15

.  

 

3.2 Influence of ground objects on lightning flashes 

 

 One of the most important features of DB model is that it allows the use of 

attractors and repulses to direct the growth of the discharge pattern. The growth can be 

attracted to a user specified region by setting the boundary condition  = Uanode for the 

lattice points occupied by that region, while the growth can be repulsed from the region 

by setting  = Ucathode. For the two lattice configurations used in this study, initial 

boundary conditions imposed by the ground plane and cloud base themselves act as an 

attractor and a repulsor respectively. Furthermore, by introducing additional attractors 

and repulsors, the direction of propagation of the discharge can be controlled 

accordingly. In this study, additional attractors were introduced into the 3D lightning 

configuration to simulate the effect of objects on the ground plane during lightning 

flashes. In order to impose realistic conditions for lightning discharges, η = 5.2 was 

used. For simplicity, default values Ucathode = 0 and Uanode = 1 were used to represent the 

potential of cloud base and ground respectively. 

 

 Figure 6 shows final visual output of two simulations conducted to demonstrate 

the behaviour of simulated lightning discharges near ground objects. Additional 

boundary conditions imposed by these structures were incorporated by setting the 

potential of the lattice points occupied by the grounded structures to  = 1. In both 

simulations, lightning discharge was attracted towards the grounded structure, instead of 

the ground plane. The obvious reason behind such behavior is that the local electric field 

near the pointed surfaces of the structures is relatively higher than that of the ground 

plane. Since the growth probability of the discharge is dependent on local electric field, 

propagation of the pattern gets oriented towards the areas of high local electric field.  

 

 Due to its stochastic nature, the exact strike path of real lightning flashes is 

unpredictable
13

. Although taller pointed structures on the ground have a higher 

probability to be struck by lightning, predicting whether lightning flashes initiated from 

a nearby cloud base will hit the structure is not possible. In order to justify that the same 

stochastic property is conserved in DB model as well, a simple analysis was conducted 

using the grounded vertical rod shown in Figure 6a.   
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Figure 6:  Simulated lightning discharges striking objects on the ground. (a) A simple vertical 

rod (b) A complex tree-like structure. 

 

 By varying the height (h) of the rod and the horizontal distance (d) from the 

discharge initiation point, a set of simulations were carried out to determine the 

frequency of lightning strikes. Twenty simulations were carried out for each combination 

of h and d, and the number of times the rod was struck by lightning was counted for 

each case. The results are given in Table 1. All lengths and heights are given in terms of 

the nearest neighbor distance of the lattice. 

 

Table 1: Frequency of lightning strikes on the rod for various values of h and d 

 

h d No of strikes  

(out of 20) 

Probability of  

lightning strike 

45 20 15 0.75 

40 20 12 0.60 

30 20 10 0.50 

30 30 6 0.30 

30 35 4 0.20 

 

 The data given in Table 1 show that lightning flash hitting the rod is not a 

deterministic event. Although the data sample is limited, for every combination of h and 

d considered, probability of a lightning strike is less than 1; that is there’s always a non 

zero probability for the simulated lightning flash to miss the rod and hit the ground 

nearby. However, probability of striking the rod seems to be dependent on the height (h) 
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of the rod and the horizontal distance (d) from the discharge initiation point. Probability 

of a strike appears to increase with height of the rod. This observation agrees with the 

situation regarding real lightning strikes; that the probability of taller objects getting hit 

by lightning is higher than that of shorter objects. Also it can be noticed that the 

probability of a strike decreases as the horizontal distance to the discharge initiation 

point (d) is increased; which is also a situation one can expect in real lightning. 

 

 The results of simulations suggest that DB model posses the same stochastic 

properties observed in real lightning. This behaviour is expected due to the probabilistic 

manner in which new links are added to the discharge structure. An important thing to 

consider here is that the ratio between the height of a ground object, and the distance 

between ground and cloud base in the simulations may not be comparable with the real 

situation. Therefore one should not attempt to directly compare the results given in Table 

1 with situations regarding real lightning strikes. 

 

3.3 Upward connecting positive leader development 

 

Upward connecting positive leader development which occurs during real CG lightning 

flashes can be effectively simulated with the novel extension introduced into DB model. 

As done in the previous section, in order to impose realistic conditions for lightning 

discharges, η = 5.2 was used and the default initial boundary conditions Ucathode = 0 and 

Uanode = 1 were used for simplicity. 

 

Although the breakdown physics are different for negative stepped leaders and upward 

connecting positive leaders
13

, for simplicity, both types of discharges were treated in the 

same way in this work. That is, the value of η used to control stepped leader growth (η = 

5.2) was used to control upward connecting leader growth as well. However it should be 

noted that one can change the growth and appearance of upward connecting positive 

leaders by simply giving a different value of η.  

 

Figure 7 shows a snapshot taken from a simulation conducted to demonstrate upward 

connecting positive leader development from the ground plane. The negative stepped 

leader is indicated in blue while the upward connecting positive leaders are in red. At the 

time when the snapshot was taken, two upward connecting leaders appear to have 

developed from the ground plane. The threshold for upward connecting leader initiation 

was set to Ebreak = 0.02. The first upward connecting leader initiated from the ground, 

when the tip of the stepped leader approached at a height of 23 units from the ground 

(cloud base is at 100 units). At a height of 17 units from the ground, the longest upward 

connecting positive leader intercept with the negative stepped leader, forming the 

complete lightning path. 
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Figure 7: Upward connecting positive leader developing from earth surface. 

 

It was assumed that the threshold Ebreak controls the height to the stepped leader tip from 

the ground, when the upward connecting leader initiation occurs. In order to test this 

hypothesis, Ebreak was varied from 0.02 to 0.07, and for each case, height of the leader tip 

above the ground (H) at the time when the first upward connecting leader initiated was 

determined. To reduce statistical fluctuations, 10 simulations were executed for each 

value of Ebreak and average height H  was calculated. The variation of H versus Ebreak is 

shown in Figure 8. The errors indicated in the figure are the errors in the mean 

calculated as ns /  where s is the standard deviation and n is the number of 

measurements. Since the growth of the discharges occurs in discrete steps, H takes only 

integer values. Therefore average height H  was truncated to the nearest integer. 

 

Figure 8 clearly shows that the average height H exponentially decreases with Ebreak. 

This behaviour is quit logical since the role of Ebreak is to suppress the effect of local 

electric field when selecting initial discharge links for new upward connecting leaders. 

As the stepped leader approaches at a certain height from the ground, local electric field 

associated with one or more possible breakdown links (that are relevant to upward 

connecting leader initiation) will exceed Ebreak,, initiating upward connecting leaders. But 

if Ebreak is increased, a much higher value of local electric field may be needed to surpass 

it, and the stepped leader may need to descend further down to produce that same effect. 
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H = 32.2 - 13.4Ln(Ebreak)

0

4

8

12

16

20

24

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

H

Ebreak

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Variation of H as a function of Ebreak 

 

 

4. CONCLUSIONS  

 In this work, stochastic dielectric breakdown model was applied to both 2D and 

3D domains to simulate lightning discharges. Important results obtained in this work are 

summarized as follows: 

 

 Appearance and fractal dimension of discharge patterns are strongly dependent on 

the model parameter η. For large values of η, “branched” type discharges are formed 

while lower values of η produces “bush” type (densely packed) discharges. 

 As η is increased, average fractal dimension of the patterns decrease exponentially. 

3D discharge patterns similar to the actual lightning are obtained when η ≈ 5.2. 

 By introducing additional boundary conditions into DB model, influence of ground 

objects on lightning flashes can be simulated. Tall, pointed structures on the ground 

have a higher probability of attracting simulated lightning discharges. Probability of 

strikes increases with the height of the ground object while it decreases as the 

horizontal distance to the discharge initiation point is increased.  

 A new extension introduced into the DB Model can simulate the development and 

attachment of upward connecting positive leaders to the downward moving negative 

stepped leader during the progression of CG lightning flashes. Height of the stepped 

leader tip above the ground (at the time when the upward connecting leader initiation 

occurs) is dependent on the initial breakdown voltage threshold. Average height to 

the point of inception decreases exponentially as breakdown threshold increases.  
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