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1. INTRODUCTION  

Ion-acoustic solitary waves have been investigated theoretically by a large number 

of scientists1-4 in presence of isothermal or non-isothermal electrons with warm positive as 

well as warm negative ion drifts in Maxwellian distribution, but the characteristics of space 

plasmas are generally controlled by collective behaviour of wave-particle interaction with 

the exhibition of distinct non-Maxwellian high energy tail distribution. Elwakil et al5 

considered non-thermal(β) Cairn’s type electron with positive and negative ion plasma from 

non-Maxwellian distribution. In upper ionosphere, solitary waves with electrostatic 

structures involving density depletions have been observed by Freja satellite6. On the other 

hand, Lonngren7,Ikezi8 and Ikezi et al9 investigated the same ion-acoustic solitary waves 

experimentally with a dissimilarity of amplitude and width from theoretical values. 

Introducing different plasma parameters, a group of scientists10-13 have done theoretically a 

lot of noble works on the propagation of ion-acoustic solitary waves for isothermal 

plasma(𝛽 = 0) in presence of positive and negative ions. In an unbounded plasma with 

warm non-thermal electrons(𝛽), both compressive as well as rarefactive solitary waves are 

found in presence of positive ions and negative ions because non-thermal plasma plays an 

important role for the formation of both solitary waves. Cairns et al14 showed in their paper 

that the presence of non-thermal electrons may change the nature of ion-acoustic solitary 

waves and allow the existence of their structures very like those observed. They have shown 

that the solitons with both positive and negative density perturbations can exist in presence 

of non-thermal electron population. Bhattacharya et al15 investigated the effects of non-

thermal electrons (𝛽)and negative ions on ion-acoustic solitary waves in a bounded plasma 

and found some important results based on compressive and rarefactive solitary waves. 

Again Paul et al16 studied analytically the non-thermal plasma with positive ion only. The 

present author also investigated the same non-thermal plasma with positive and negative ion 

drifts highlighting the higher order solitary wave solutions, stability of these solutions and 

comparison of first and second order amplitudes and widths in presence17 and in absence18 

of positron. Regarding this non-thermal electron plasma, earlier authors did not take the 

heavier masses of negative ion plasma and also did not show the effect of non-thermal 

electron (𝛽)on heavier negative ion masses(Q). The present author thus tried to take the 

heavier negative ion plasma(Q) and studied the influence of non-thermal electron 

parameter(β) on heavier masses of negative ion plasma. 
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The working plan of the present paper is arranged in the following way: In sec.2 we 

investigate the exact form of the Sagdeev potential function ψ(φ) in warm and cold ion 

plasma with an analytical calculation of the max. Value of the electrostatic potential (𝜙𝑚) 

i.e. amplitude where ψ(𝜙𝑚)  = 0 , first (𝜙1) and second (𝜙2) order solitary wave solutions 

with the conditions for the existence of their stable solutions in both warm and cold ion 

plasma. The critical value of the heavier masses of negative ion plasma (𝑄𝑐)is calculated in 

this section for both warm and cold ion plasma. The entire problem is discussed very 

carefully in sec.3. In this section graphical representation of the sagdeev potential function 

ψ(φ) against electrostatic potential (φ) is discussed with the variation of different plasma 

parameters like non-thermal parameter(β), ratio of negative to positive ion masses plasma 

(Q) and negative ion concentration (njo). The graphical nature of first (𝜙1)and second 

order(𝜙2) solitary wave solutions are analysed here with great care in this section on the 

basis of the variation of heavier masses of negative ion plasma(Q). Concluding remarks are 

given in sec.4. 

 

2. FORMULATION 

We consider a collisionless unmagnetized plasma consisting of warm non-thermal 

electrons, positive and negative ions with drifts. The governing normalised basic set of 

equations along x-axis for such types of unbounded plasmas are 

Equation of continuity:   0
n

n u
t x


 

 
 

 
                                           (1) 

Equation of motion: 
u u p Z

u
t x Q n x Q x

    


  

    
   

   
                     (2) 

Pressure equation: 3 0
p p u

u p
t x x

  
 

  
  

  
                                       (3) 

Poisson’s equation: 
2

2 en Z n
x

 



 


                                                   (4) 
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where  , , , , , , ,en u Q p Z n       , t and x are respectively the number density of ions, ion 

fluid velocity, temperatures of ions, ratio of negative to positive ion masses, pressure of 

ions, charge of ions, concentration of non-thermal electrons, electrostatic potential, time 

and distance. The charge neutrality condition is  

                     ∑ 𝑛𝛼0𝑍𝛼𝛼     = 𝑛𝑒0                             (5) 

                  Or, 𝑛𝑖0 = 1 + Z𝑛𝑗0                                 (6) 

In this case 
e

T

T


   where 𝑇𝛼 is the temperatures of ion and 𝑇𝑒 is the temperature of electron,

1
j

i

m
Q

m
    and 1Z   for positive ion (i), Q Q   and Z Z    for negative ion (j). The 

normalized density of non-thermal electron is   

                   𝑛𝑒 = (1 − 𝛽ф + 𝛽ф2)𝑒ф                                  (7) 

Where β = 
4𝜆

1+3𝜆
     [with 𝛌 ≥ 0  and  0≤ 𝛽 <

4

3
  ] 

In this case β measures the deviation from the thermalised state and λ determines the 

presence of fast particles in the model.  

In  the above equations, we have normalised  the densities by the equilibrium value n0, the 

velocities by the characteristic value  eKT

m

  where  𝑚𝛼  is the mass of ion and K is the 

Boltzmann constant, the pressure  by the ion–equilibrium pressure  p0 = n0𝑇𝛼 , the potential 

by  eKT

e
 , the time  by  

24 o

m

e n




 and the distance by the Debye length  

24

e

o

KT

n e
  so that 

the equations appear totally in dimensionless form.   

For solitary wave solution we assume that the dependent variables depend on a single 

independent variable η defined by     

                      x Vt                                                    (8) 

where V is the velocity of the solitary wave .The boundary conditions are   

 𝑛𝛼 → 𝑛𝛼𝑜, 𝑢𝛼 → 𝑢𝛼𝑜, 𝑝𝛼 → 1, 𝑛𝑒 → 1,  and ф → 0  at  |𝑥| → ∞                  (9) 
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Following Chattopadhyay19 and using the above transformation (8) & boundary  conditions 

(9) we get finally from equations (1) to (4)  

𝑛𝛼=
1

2
√

𝑄𝛼 𝑛𝛼0
3

3𝜎𝛼
[√(𝑉 − 𝑢𝛼0 + √

3𝜎𝛼

𝑄𝛼  𝑛𝛼0
)2  −

2𝑍𝛼𝜙

𝑄𝛼
 − √(𝑉 − 𝑢𝛼0 − √

3𝜎𝛼

𝑄𝛼  𝑛𝛼0
)2  −

2𝑍𝛼𝜙

𝑄𝛼
](10) 

And 

𝑑2𝜙

𝑑𝜂2=𝑛𝑒 −
1

2
𝛴𝑍𝛼√

𝑄𝛼 𝑛𝛼0
3

3𝜎𝛼
[√(𝑉 − 𝑢𝛼0 + √

3𝜎𝛼

𝑄𝛼  𝑛𝛼0
)2 −

2𝑍𝛼𝜙

𝑄𝛼
 −

√(𝑉 − 𝑢𝛼0 − √
3𝜎𝛼

𝑄𝛼  𝑛𝛼0
)2 −

2𝑍𝛼𝜙

𝑄𝛼
] (11a) 

By equation (7) we get from equation (11a) 

𝑑2𝜙

𝑑𝜂2=(1 − 𝛽𝜙 + 𝛽𝜙2)𝑒𝜙 −
1

2
𝛴𝑍𝛼√

𝑄𝛼 𝑛𝛼0
3

3𝜎𝛼
[√(𝑉 − 𝑢𝛼0 + √

3𝜎𝛼

𝑄𝛼  𝑛𝛼0
)2 −

2𝑍𝛼𝜙

𝑄𝛼
 −

                                                                                         √(𝑉 − 𝑢𝛼0 − √
3𝜎𝛼

𝑄𝛼  𝑛𝛼0
)2 −

2𝑍𝛼𝜙

𝑄𝛼
]  (11b) 

For  n  to be real the following restrictions on   is 

                      −
𝑄

2𝑍
(𝑉 − 𝑢𝑗𝑜 − √

3𝜎𝑗

𝑄𝑛𝑗𝑜
)
2

< ф< 
1

2
(𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)

2

   (12) 

From equations (1) to (4) after using the boundary conditions (9), the above transformation 

relation (8) and by the equation (7) we can write finally equation (11b) as  

 
𝑑2𝜙

𝑑𝜂2
  = 𝑆1ϕ+𝑆2𝜙

2+𝑆3𝜙
3+ 𝑆4𝜙

4 + ……………..= - 
𝜕𝜓

𝜕ф
                              (13) 

Where   𝑆1  = (1 – β) -  
𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)2    − 
3𝜎𝑖
𝑛𝑖𝑜

 - 
𝑍2𝑛𝑗𝑜

𝑄(𝑉− 𝑢𝑗𝑜)2− 
3𝜎𝑗

𝑛𝑗𝑜
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𝑆2 = -  
1

2

[
 
 
 
 
 
1 + 

𝑛
𝑖𝑜

3
2

2√3𝜎𝑖
{(𝑉 − 𝑢𝑖𝑜 + √

3𝜎𝑖

𝑛𝑖𝑜
)−3 − (𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)−3} −

𝑍3𝑛
𝑗𝑜

3
2

2𝑄
3
2√3𝜎𝑗

{(𝑉 − 𝑢𝑗𝑜 + √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−3

− (𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−3

}
]
 
 
 
 
 

 

𝑆3 = 
1

6

[
 
 
 
 
 (1 + 3𝛽) +

3𝑛
𝑖𝑜

3
2

2√3𝜎𝑖
{(𝑉 − 𝑢𝑖𝑜 + √

3𝜎𝑖

𝑛𝑖𝑜
)−5 − (𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)−5} +

3𝑍4𝑛
𝑗𝑜

3
2

2𝑄
5
2√3𝜎𝑗

{(𝑉 − 𝑢𝑗𝑜 + √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−5

− (𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−5

}
]
 
 
 
 
 

 

𝑆4 = 
1

24

[
 
 
 
 
 (1 + 8𝛽) −

15𝑛
𝑖𝑜

3
2

2√3𝜎𝑖
{(𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)−7 − (𝑉 − 𝑢𝑖𝑜 + √

3𝜎𝑖

𝑛𝑖𝑜
)−7} +

15𝑍5𝑛
𝑗𝑜

3
2

2𝑄
7
2√3𝜎𝑗

{(𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−7

− (𝑉 − 𝑢𝑗𝑜 + √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−7

}
]
 
 
 
 
 

 

                                                                                                                                  (14) 

𝛙(ф) = (1 + 3𝛽) – [(1 + 3𝛽) − 3𝛽ф + 𝛽ф2]𝑒ф - 
𝑛

𝑖𝑜

3
2

6√3𝜎𝑖
[{(𝑉 − 𝑢𝑖𝑜 + √

3𝜎𝑖

𝑛𝑖𝑜
)2 − 2ф}

3

2  −

{(𝑉 − 𝑢𝑖𝑜 − √
3𝜎𝑖

𝑛𝑖𝑜
)2 − 2ф}

3

2 − (𝑉 − 𝑢𝑖𝑜 + √
3𝜎𝑖

𝑛𝑖𝑜
)3 + (𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)3] 

- 
𝑄

3
2𝑛

𝑗𝑜

3
2

6√3𝜎𝑗
[{(𝑉 − 𝑢𝑗𝑜 + √

3𝜎𝑗

𝑄𝑛𝑗𝑜
)
2

+
2𝑍ф

𝑄
}
3

2 − {(𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
2

+
2𝑍ф

𝑄
}
3

2 − (𝑉 − 𝑢𝑗𝑜 +

√
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
3

+ (𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
3

]                                                               (15a) 

 

The above function 𝛙(ф) can also be written in the following form: 

 𝜓 (ϕ) = −
1

2
𝑠1𝜙

2 −
1

3
𝑠2𝜙

3 −
1

4
𝑠3𝜙

4 −
1

5
𝑠4𝜙

5 −  .............                                             (15b) 

 

Also the form of the said function 𝜓 (ϕ) for cold positive and negative ion plasma is given 

by  
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𝛙(ф) = (1 + 3𝛽) – [(1 + 3𝛽) − 3𝛽ф + 𝛽ф2]𝑒ф+𝑛𝑖𝑜(𝑉 − 𝑢𝑖𝑜)
2 [1 − √1 −

2𝜙

(𝑉−𝑢𝑖𝑜)2
] 

− ZQ𝑛𝑗𝑜(𝑉 − 𝑢𝑗𝑜)
2
[1 − √1 +

2𝑍𝜙

𝑄(𝑉−𝑢𝑗𝑜)
2]                         (15c) 

The function 𝛙(ф) in (15) is called the sagdeev potential and it will be reduced to that form 

of potential which Cairns et al14 obtained for njo = 0, nio = 1 and uio = 0. Again when njo = 

0(i.e. negative ions are absent) we get that form of 𝛙(ф) that Paul et al16 obtained. This 

Sagdeev potential function 𝛙(ф) in (15a) and (15c) is more general form than Ref.14. In 

absence of cold negative ion plasma [i.e.𝑛𝑗𝑜 = 0, 𝜎𝑗  =  0], the above form of Sagdeev 

potential function 𝛙(ф) and the concentration of ion  𝑛∝ are reduced to the form of Ref.14 

provided 𝑛𝑖𝑜 → 1 and V - 𝑢𝑖𝑜  = M.  

Under condition (12) for formation of solitary wave solution 𝛙(ф) = 0 at ϕ =0, 𝛙(ф) = 0 at 

ϕ = 𝜙𝑚 (say) [𝜙𝑚 ≠ 0] where  𝜙𝑚  is the max.value of ϕ and 𝛙(ф) < 0 in 0 <|𝜙|<𝜙𝑚, we 

now get from (15b) at ϕ = 𝜙𝑚 

                                           
1

2
𝑠1  + 

1

3
𝑠2𝜙𝑚 + 

1

4
𝑠3𝜙𝑚

2  + 
1

5
𝑠4𝜙𝑚

3   = 0 

For solution of second order solitary wave, taking terms upto 𝜙𝑚
2 , we get from the above 

equation as   

                             
1

2
𝑠1  + 

1

3
𝑠2𝜙𝑚 + 

1

4
𝑠3𝜙𝑚

2  = 0 

The above equation gives 

                                        𝜙𝑚 = 
−2𝑆2+√4𝑆2

2−18𝑆1𝑆3

3𝑆3
  ,      𝜙𝑚 = 

−2𝑆2−√4𝑆2
2−18𝑆1𝑆3

3𝑆3
  

 

For compressive solitary waves 𝜙𝑚> 0 and for rarefactive solitary waves 𝜙𝑚< 0. 

Now from equation (13) taking terms upto 𝜙2 we get  

                                         
𝑑2ф

𝑑𝜂2  = 𝑆1ф + 𝑆2ф
2 
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The first order K-dV soliton solution20 is  

                                         𝜙1 = 
3𝑆1

2𝑆2
𝑠𝑒𝑐ℎ2 (√

𝑆1

4
. 𝜂)                    (16) 

Again taking terms upto 𝜙3from (13) we get   

                                               
𝑑2𝜙

𝑑𝜂2   = 𝑆1ϕ+𝑆2𝜙
2+𝑆3𝜙

3 

In this case the higher order M-KdV solitary wave solution20 is 

                                                 ф2 = 
6𝑆1

2𝑆2+ √4𝑆2
2−18𝑆1𝑆3[2𝐶𝑜𝑠ℎ2(√

𝑆1
4

 𝜂)−1]

       (17) 

 

2.1  Condition for solitary wave solution and its consequences 

 The first order soliton solution (𝜙1) will be real and finite only when  

                    𝑆1> 0 and  𝑆2 ≠ 0                         (18) 

It is also evident from (18) that the first order solution may be compressive or rarefactive. 

Again the second order soliton solution (𝜙2) will be real and finite only when 

             𝑆1> 0 and 4𝑆2
2  - 18 𝑆1𝑆3> 0                        (19) 

The condition for the existence of solitary wave solution will be obtained from 𝑆1> 0 

 [i.e. 
𝜕2𝜓

𝜕𝜙2<0 at  ϕ  = 0] which gives  

                      
𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)2    − 
3𝜎𝑖
𝑛𝑖𝑜

  + 
𝑍2𝑛𝑗𝑜

𝑄(𝑉− 𝑢𝑗𝑜)2− 
3𝜎𝑗

𝑛𝑗𝑜

+ β< 1                      (20a) 

In absence of cold negative ion (𝑛𝑗0 = 0, 𝜎𝑗 = 0) and for 𝑛𝑖0 → 1, inequality (20a) supports 

Ref.16. Again in another words for absence of non-thermal electron (β = 0), inequation (20a) 

supports Ref.19. For cold non-thermal plasma [𝜎𝑖 = 0, 𝜎𝑗 = 0], the above condition (20a) 

reduces to the form 
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𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)2      +  
𝑍2𝑛𝑗𝑜

𝑄(𝑉− 𝑢𝑗𝑜)2
+  β<  1                     (20b) 

The critical value of Q (= 𝑄𝑐) is obtained from (20a) by the equation  

         𝑄𝑐 = 
1

(𝑉−𝑢𝑗0)
2 [𝑍2𝑛𝑗0 {(1 − 𝛽) −

𝑛𝑖0

(𝑉−𝑢𝑖0)2− 
3𝜎𝑖
𝑛𝑖0

}

−1

+
3𝜎𝑗

𝑛𝑗0
]                          (20c) 

For cold ion plasma i.e. 𝜎𝑖 = 0,𝜎𝑗 = 0 the expression for 𝑄𝑐 is  

        𝑄𝑐 = 
𝑍2𝑛𝑗0

(𝑉−𝑢𝑗0)
2 [{(1 − 𝛽) −

𝑛𝑖0

(𝑉−𝑢𝑖0)2
}
−1

]                                                      (20d) 

Again for cold positive and negative ion plasma [𝜎𝑖=0,𝜎𝑗 = 0], the critical value of β (= 𝛽𝑐) 

is  

                  𝛽𝑐 = 1 -  
𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)2      -  
𝑍2𝑛𝑗𝑜

𝑄(𝑉− 𝑢𝑗𝑜)2
                                                 (20e)  

 

Relations (20c) and (20d) are very important because the effect of non-thermal parameter on 

heavier masses of negative ion plasma is shown by those relations. 

Now from (19), 4𝑆2
2  - 18 𝑆1𝑆3> 0 for second order solitary wave solution, we get finally  

[
 
 
 
 
 
1 + 

𝑛
𝑖𝑜

3
2

2√3𝜎𝑖
{(𝑉 − 𝑢𝑖𝑜 + √

3𝜎𝑖

𝑛𝑖𝑜
)−3 − (𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)−3} −

𝑍3𝑛
𝑗𝑜

3
2

2𝑄
3
2√3𝜎𝑗

{(𝑉 − 𝑢𝑗𝑜 + √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−3

− (𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−3

}
]
 
 
 
 
 
2

>  

 3[(1 –  β) −  
𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)2    − 
3𝜎𝑖
𝑛𝑖𝑜

 −
𝑍2𝑛𝑗𝑜

𝑄(𝑉− 𝑢𝑗𝑜)2− 
3𝜎𝑗

𝑛𝑗𝑜

] × 

[
 
 
 
 
 (1 + 3𝛽) +

3𝑛
𝑖𝑜

3
2

2√3𝜎𝑖
{(𝑉 − 𝑢𝑖𝑜 + √

3𝜎𝑖

𝑛𝑖𝑜
)−5 − (𝑉 − 𝑢𝑖𝑜 − √

3𝜎𝑖

𝑛𝑖𝑜
)−5} +

3𝑍4𝑛
𝑗𝑜

3
2

2𝑄
5
2√3𝜎𝑗

{(𝑉 − 𝑢𝑗𝑜 + √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−5

− (𝑉 − 𝑢𝑗𝑜 − √
3𝜎𝑗

𝑄𝑛𝑗𝑜
)
−5

}
]
 
 
 
 
 

             (21a) 
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This gives the condition for real second order (𝜙2) soliton solution along with (20a). For 

cold non-thermal plasma the above condition (21a) reduces to the following form  

[1 − 
3𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)4
+ 

3𝑍3𝑛𝑗𝑜

𝑄2(𝑉− 𝑢𝑗𝑜)
4]

2

> 3 [(1 − 𝛽) − 
𝑛𝑖𝑜

(𝑉−𝑢𝑖𝑜)2
−

𝑍2𝑛𝑗𝑜

𝑄(𝑉−𝑢𝑗𝑜)
2] × 

[(1 + 3𝛽) − 
15 𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)6
− 

15 𝑍4𝑛𝑗𝑜

𝑄3(𝑉− 𝑢𝑗𝑜)
6]                                                        (21b) 

For cold positive ion non-thermal plasma (i.e. in absence of cold negative ion 𝑛𝑗𝑜= 0), 

inequality (21b) reduces to the following inequality 

[1 − 
3𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)4
]
2

> 3 [(1 − 𝛽) − 
𝑛𝑖𝑜

(𝑉−𝑢𝑖𝑜)2
] × [(1 + 3𝛽) − 

15 𝑛𝑖𝑜

(𝑉− 𝑢𝑖𝑜)6
]              (21c) 

The max.value of the electrostatic potential (ϕ=𝜙𝑚) for second order solitary wave solution 

so obtained may be either positive (i.e. compressive in nature) or negative (i.e. rarefactive in 

nature), satisfied all the three cases (21a), (21b) and (21c). 

In case of non-drifting positive and negative ion plasma (i.e. 𝑢𝑖𝑜= 0, 𝑢𝑗𝑜= 0) with          non-

thermal electron (β ≠ 0), inequality (21b) reduces to the following form: 

[1 − 
3𝑛𝑖𝑜

𝑉4 + 
3𝑍3𝑛𝑗𝑜

𝑄2𝑉4 ]
2

> 3 [(1 − 𝛽) − 
𝑛𝑖𝑜

𝑉2 −
𝑍2𝑛𝑗𝑜

𝑄𝑉2 ] × [(1 + 3𝛽) − 
15 𝑛𝑖𝑜

𝑉6 − 
15 𝑍4𝑛𝑗𝑜

𝑄3𝑉6 ]     (21d) 

By equation (6), the inequality (21d) gives the following result for 𝑛𝑗𝑜→ 1, Z → 1 

[1 − 
6

𝑉4 + 
3

𝑄2𝑉4]
2

> 3 [(1 − 𝛽) − 
2

𝑉2 − 
1

𝑄𝑉2] × [(1 + 3𝛽) − 
30

𝑉6 − 
15

𝑄3𝑉6] (21e) 

It is an eighth degree inequation in V giving eight real or imaginary values of the phase 

velocity V depending on the values of Q, β and Z. The influence of Q on V is an interesting 

case. Inequality (21e) also shows the influence of β on heavier masses of negative ion 

plasma(Q). 
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3. DISCUSSION 

It is important to note in this context that heavier masses of negative ion plasma (Q) 

affect the formation of solitary waves in presence of non-thermal electrons. So we are now 

discussing about the Sagdeev potential function(𝜙) , first (𝜙1) and second (𝜙2) order solitary 

wave solutions of the heavier masses of negative ion plasma (Q) with non-thermal situation 

(β≠0).These are represented by the Figures 1 to 4. 

In Figure 1, the profiles of Sagdeev potential function 𝜓(𝜙) verses electrostatic 

potential (𝜙) with the variation of non-thermal electron parameter (β) are drawn for heavier 

masses of negative ion plasma (Q). For (H+, Cl-) plasma with mass ratio Q = 35.5, rarefactive 

solitary waves are obtained in presence (𝛽 ≠ 0) and in absence (𝛽 = 0) of non-thermal 

electron plasma. No compressive solitary waves are formed in this case. But it can be found 

that compressive solitary waves may be present in the system for φ > 0 under some specific 

values of the plasma parameters within the specified range. As 𝛽 increases, the amplitude of 

the rarefactive solitary waves increases. Moreover it is observed also that the amplitudes of 

the rarefactive solitary waves with non-thermal electrons (𝛽 ≠ 0) are always greater than 

that of the amplitudes of the rarefactive solitary waves with isothermal electrons (β=0).The 

curves 𝑎1, 𝑎2 and 𝑎3 showing the 

rarefactive solitary waves in Figure 1 

represent the respective Sagdeev 

potential (ψ) function at β = 0, 0.09 

and 0.2 with Q = 35.5. It is also seen 

from those figures that  𝑎1 < 𝑎2 < 𝑎3 

due to increase of β for a higher mass 

ratio Q. This is the effect of β on Q. 

Moreover a comparison between a 

non-thermal and an isothermal 

electron plasma is also observed.  

 

 Figure 1:   ψ verses ϕ for β = 0, 0.09, 0.2 
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Figure 2 shows the profiles of Sagdeev potential function 𝜓(𝜙) verses electrostatic potential 

(𝜙)with the variation of the ratios of heavier negative to positive ion masses (Q) plasma. 

 

      Figure2(a): ψ verses ϕ for Q = 8.875                      Figure2(b): ψ verses ϕ for Q = 16 

 

In presence of non-thermal electron plasma(for β = 0.2), rarefactive (ϕ < 0) solitary waves 

b1, b2 and 𝑏3 are formed for the relatively 

heavier masses (Q = 8.875, 16, 35.5 ) of 

negative ion plasma which are shown in 

Figures.2(a), 2(b) and 2(c). The amplitudes 

of those rarefactive  solitary waves are 

increasing for higher values of Q . Again in 

absence of non-thermal plasma (β = 0), the 

amplitudes of the rarefactive solitary waves 

are increasing similarly for heavier masses 

of negative ion plasma but at the same time 

they are higher than those of the values of 

the amplitudes with non-thermal electron 

plasma (𝛽 ≠ 0). 

 Figure2(c): ψ verses ϕ for Q =35.5 

In figure 3, the profiles of Sagdeev potential function 𝜓(𝜙) verses electrostatic potential (𝜙) 

with the variation of the concentration of heavier negative ion (nj0) plasma are shown. 
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Figure 3(a): ψ verses ϕ for 𝑛𝑗𝑜 = 0.1, β = 0.2  Figure 3(b): ψ verses ϕ for 𝑛𝑗𝑜 = 0.5, β = 0.2 

 

For (H+,Cl-) plasma with negative ion concentration njo = 0.1, rarefactive solitary waves are 

formed and the amplitudes of these rarefactive solitary waves are larger than the amplitudes 

of the rarefactive solitary waves for the same plasma at negative ion concentration njo = 0.5 

in presence of non-thermal electron parameter(β). Moreover it is evident that when the 

negative ion concentration (njo) upto a certain limit is increasing, the amplitude is then 

decreasing.In this case the rarefactive solitary waves are represented by the   figures H1 (for 

njo = 0.1) and H2    (for njo = 0.5) at β = 0.2 and Q = 35.5 which are shown by the Figs. 3(a) 

and 3(b). Again in absence of non-thermal electron parameter (β = 0), the sagdeev potential 

function 𝜓(𝜙) is changed  with increasing concentration of negative ion19 (from njo = 0.1 to 

0.5) for Q = 35.5.  

 

Figure 3(c): ψ verses ϕ for 𝑛𝑗𝑜 = 0.1, β = 0     Figure 3(d): ψ verses ϕ for 𝑛𝑗𝑜 = 0.5, β = 0 
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The rarefactive solitary waves in this case are represented by the figures H3 (for njo = 0.1, 

β = 0 with Q = 35.5) and H4 ( for njo = 0.5, β = 0 with Q = 35.5 ) which are shown in the 

Figures 3(c) and 3(d). It is also observed from those figures that H2< H1 and H4 < H3. 

Figure.4 represents the structures of first (𝜙1) and second (𝜙2) order solitary wave solutions 

verses η(η is the Galelian transformation parameter) with the variation of the ratios of 

heavier negative to positive ion 

masses (Q) plasma. In absence (β 

= 0) and in presence (β ≠0) of non-

thermal electron parameter β, first 

(𝜙1) order solitary wave solutions 

are negative whereas second order 

(𝜙2) solitary wave solutions are 

positive for different increasing 

values of the mass ratios Q.  

Figure 4(a): 𝜙1 and 𝜙2 verses η with Q variation for β = 0. 

In a particular mass ratio (Q), the absolute values of first (𝜙1) and second (𝜙2) order solitary 

wave solutions are decreasing in presence (β ≠0) and in absence (β = 0) of non-thermal 

electron. For Q = 8.875, 16 and 

35.5, first (𝜙1) order solitary wave 

solutions are denoted by the 

respective figures N1, N2 and N3 in 

presence (β ≠0) of non-thermal 

electron parameter β (β = 0.2) and 

those by L1, L2 and L3 in absence of 

β(β = 0). It is evident from the 

figures that L1 ˂ L2 ˂L3, N1 ˂ N2 ˂ 

N3 and N1< L1, N2< L2 and N3 <L3 

are valid upto a certain value of η 

and after that the result is changed. 

Figure 4(b): 𝜙1 and 𝜙2 verses η with Q variation for β = 0.2 
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Again for Q = 8.875, 16 and 35.5, the second (𝜙2) order solitary wave solutions are denoted 

by S1, S2 and S3 in presence of non-thermal electron parameter β (β = 0.2) and those by R1, 

R2 and R3 in absence of β(β = 0). It is also observed similarly from the figures that R1˂ R2 

˂ R3, S1˂ S2 ˂ S3 and S1> R1, S2> R2 and S3 >R3 in presence and in absence of β. These are 

represented by the figures 4(a) and 4(b). The interesting situation in this case is that all 

values of 𝜙2 with β = 0.2 for different η are larger than that of all second order values (𝜙2) 

with β = 0 for different η in second order (𝜙2) solitary wave solution whereas these results 

are just reverse like those of first order (𝜙1)  solitary wave solution. 

 

3. CONCLUSION 

We have investigated theoretically the Sagdeev potential function (𝜓) , first (𝜙1) as 

well as second (𝜙2) order solitary wave solutions of heavier masses of negative ion plasma 

(Q). In this case we mainly studied the higher masses of negative ions with respect to positive 

ions. For higher mass ratio(Q), the effect of 𝛽 on Q is an interesting new result. Rarefactive 

solitary waves are formed for this heavier mass ratio (Q) and the amplitude of this wave will 

be higher for larger mass ratio (Q) with higher negative ion concentration (nj0). The first 

(𝜙1) and second (𝜙2) order rarefactive solitary wave solutions are larger for higher mass 

ratio (Q) in a particular non-thermal electron parameter(𝛽). 

Our future plan is to solve the same non-thermal plasma with relativistic positive and 

negative ion. 
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