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Abstract 

  

New modified nonrelativistic bound state energy eigenvalues have been obtained for the 

hydrogenic atoms with spin ½ under the sum of modified Cornell plus inverse quadratic 

potential (MCIQP), at finite temperature, in the symmetries of the noncommutative three-

dimensional real space phase (NC: 3D-RSP). The ordinary sum of Cornell plus inverse 

quadratic potential is extended by including new central terms to become MCIQP. In 

addition, MCIQP is suggested as a quark–antiquark interaction potential for studying the 

masses of heavy and heavy–light mesons in (NC: 3D-RSP), in which the potential satisfies 

the features of quantum chromodynamics theory of strong interaction. For this purpose, the 

modified radial Schrödinger equation is analytically solved using the generalized Bopp’s 

shift method and standard perturbation theory. The energy eigenvalues and the 

corresponding new Hamiltonian operator are obtained in (NC: 3D-RSP). These results are 

applied to calculate the mass of mesons such as charmonium cc , bottomonium bb and 

mesons sc  with spin (0 or 1). In a thermal medium of a positive temperature, the new 

parameters of the studied potential MCIQP become temperature dependent because of color 
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screening. It is found that the perturbative solutions of the discrete spectrum can be expressed 

on the Gamma function, the discreet atomic quantum numbers ( )mslj ,,,  and the potential 

parameters ( LFGC ,,, ), in addition to noncommutativity parameters ( and ). The 

influence of the induced magnetic field and the coupling parameter of the spin field on some 

quantum properties of the system have also been studied. The total complete degeneracy of 

modified energy levels under MCIQP is found to be equal to 
24n , which gives a very good 

indicator that our new treatments produce clear energy values when compared with similar 

energy levels obtained in ordinary relativistic quantum mechanics (RQM). New mass spectra 

for the quarkonium systems is found to be equal to the sum of ordinary values in RQM plus 

two perturbative terms proportional to the parameters ( or  ) and ( or ) of 

noncommutativity space-phase. These results are in good agreement with the already 

existing results in nonrelativistic noncommutative quantum mechanics (NRNCQM) where 

the physical treatment was done using other potentials such as new modified potential 

containing Cornell, Gaussian and inverse square terms and modified quark-antiquark 

interaction potential.   

Keywords:  Schrödinger equation, the hydrogenic atoms, the heavy quarkonium systems, 

Cornell potential, inverse quadratic potential, noncommutative space-phase, 

the Weyl Moyal star product, the Bopp’s shift method. 

 

1. INTRODUCTION 

Over several decades, there has been a growing interest among researchers to 

investigate the analytical solutions of the Schrödinger equation for physical potential models 

in quantum mechanical systems. Nonrelativistic wave equations and energy eigenvalues 

have been of interest for theoretical physicists in many branches of physics such as nuclear 

physics, atomic physics and quantum chromodynamics (QCD). Recently, in a particular 

case, the study of different properties of heavy-light mesons was very important for 

understanding the structure of hadrons and the dynamics of heavy quarks in QCD theory. 

Very recently, considerable efforts have been made to understand different properties of 

heavy-light mesons; so researchers calculated the mass spectra of quarkonium systems such 

as charmonium, bottomonium and mesons sc  with the quark-antiquark interacted under 

Cornell potential, mixing between the Cornell and the harmonic oscillator potential, the 

quadratic and Morse potential in the context of relativistic and non-relativistic quantum 

mechanics1-5. This work is motivated by several recent studies such as the non-

renormalisation of the standard model, string theory, quantum gravity; nonrelativistic 

noncommutative quantum mechanics (NRNCQM) that has attracted much attention6-10. The 

noncommutativity of space-phase was initially used by W. Heisenberg11 in 1930 and was 

formalized by H. Snyder12 in 1947. It should be noted that nonrelativistic quantum 

mechanics is included within the framework of NRCQM. The main objectives of this work 

are to further develop the work done by A. I. Ahmadov et al.1, expand it to the symmetries 

of NRNCQM, and to achieve a more accurate physical description so that this study becomes 
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valid in the field of nanotechnology. Furthermore, attempts are made to find new 

applications including solutions of the modified radial Schrödinger equation with a class of 

Cornell potentials influenced by the temperature.  On the other hand, more profound 

interpretations are sought in the sub-atomics and nano-scales using an updated version of the 

Cornell plus inverse quadratic potential at finite temperature, which has the following new 

form: 

( ) ( )
( )

( ) ( ) ( )
→→









−++−=→+−= LL

r

F

r

G

r

C
rVrVrrTC

r

rTB
rrTArV ciqciqciq

22
ˆ,

,
,

34

2
      (1)           

Here ( )rTA , , ( )rTB ,  and ( )rTC ,  are three parameters dependent on the temperature and the 

interquark distance r  (see Eq. (8)). The parametersC ,G , F  and L  are determined in Eq. 

(10) while the coupling 
→→

L  is interpreted as the interaction between the angular momentum 

operator and noncommutativity properties of space-phase (see Eq. (16)). In this work, 

nonrelativistic quantum dynamics of the hydrogenic atoms such as (
+He , 

+Be and +2Li ) are 

studied with spin-1/2 by solving the MSE using the generalized Bopp’s shift method and 

standard perturbation theory in (NC: 3D-RSP). Furthermore, this study can be generalized 

to describe the quarkonium systems such as charmonium cc , bottomonium bb  and mesons 

sc  at finite temperature with spin-(0 or 1) in NRNCQM symmetries. The new structure of 

NRNCQM based on new canonical commutative relations in both the Schrödinger and the 

Heisenberg pictures (SP and HP), are as follows13-21 (Throughout this paper, the natural units 

1== c  will be used): 

( ) ( ) ( ) ( )
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
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ˆ,ˆˆ,ˆ  ,ˆ,ˆˆ,ˆ

           (2) 

where the indices ( )3,2,1,   while ABBABA **, −




 

, for any two operators A  and

B . However, the new operators ( ) ( ) ( )tptxt  ˆor  ˆˆ =   in HP depend on the corresponding time-

independent operator  px ˆor ˆˆ =  in Spas shown in the following generalized projections 

relations:   

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )00

00

ˆexp*ˆ*ˆexpˆ

ˆexpˆexp

ttHittHit

ttHittHit

ciqciq

ciqciq

ncnc
−−−=

−−−=




                                        (3) 

here  px or = and ( ) ( ) ( )tptxt  or  = . The evaluations of the dynamics systems are 

described from the following generalized motion equations in NRNCQM: 
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dt
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
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where ciqĤ and ciq

nc
Ĥ  represent the quantum Hamiltonian operators for CIQP and MCIQP in 

the NRQM and its extension, respectively. The very small two parameters 
  and 



  

(compared to the energy) are elements of two antisymmetric real matrixes with dimensions 

of (length) 2 and (momentum) 2, respectively. In addition, ( )  denotes to the Weyl Moyal 

star product, which is generalized between two arbitrary functions ( )( )pxgf , ,  to the new 

form ( ) ( ) ( )( )pxgfpxgpxf ,ˆ,ˆˆˆ,ˆˆ   in (NC: 3D-RSP) symmetries22-31 as follows:       

( ) ( ) ( )( ) ( )pxgf
i

gf
i

fgpxgfpxfg ppxx ,
22

,, 







−−→ 




            (5) 

The second and the third terms in the above equation present the effects of (space-space) and 

(phase-phase) noncommutativity properties. The purpose of this work is to solve the 

modified radial Schrödinger equation for the MCIQP model at finite temperature in (NC: 

3D-RSP) symmetries using the generalized Bopp’s shift method and standard perturbation 

theory. The organization scheme of the present work is given as follows: In the next section, 

we briefly review the ordinary SE with CIQP. Section 3 is devoted to study MSE by applying 

the generalized Bopp's shift method and the standard perturbation theory. This is to find the 

quantum spectrum of the perturbed spin-orbital operator and induced Zeeman effect for 

hydrogenic atoms such as
+He , 

+Be  and
+2Li  under MCIQP at finite temperature. In the next 

section, we determine the energy spectra of the quarkonium systems under MCIQP, in 

addition to the new formula of mass spectra in (NC: 3D-RSP) symmetries. The main results 

of this work will be presented in the sixth section. Finally, in section 7, this paper is 

concluded with some brief remarks. 

 

2. OVERVIEW OF THE EIGENFUNCTIONS AND THE ENERGY 

EIGENVALUES FOR SE UNDER CIQP 

  The Schrödinger equation (SE) for the sum of Cornell plus inverse quadratic potential 

(CIQP) at a finite temperature is of the form1:  

( ) ( ) ( )
( )

( ) 22 ,
,

, rrTC
r

rTB
rrTArVCr

r

B
ArrV ciq +−=→+−=               (6) 

The interaction potential between a quark and anti-quark is determined from the standard 

Cornell potential ( )
r

B
ArrV −= . The first part is responsible for quark confinement at large 

distances while the second dominates at short distances4. This potential has been extensively 

studied in both relativistic and non-relativistic quantum mechanics and has attracted a great 
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deal of attention in particle physics. Here A  and B  are two positive coefficients and r is the 

interquark distance. As it is mentioned in the first reference, the color screening in a thermal 

medium of a positive temperatureT can modify the potential to become dependent on 

temperature, which can be parameterized in the following form1: 

( )
( )

( )( )( ) ( )( ) ( )( )rT
r

C
rT

r

B
T

rT

A
rV DDD

D

T 


−+−−−−= exp  exp exp1
2

         (7) 

with 

( )
( )

( )( )( ) ( ) ( )( ) ( ) ( )( )rTCrTCrTBrTBrT
rT

A
rTA DDD

D




−=−=−−= exp,   and  exp,    ,exp1,    (8) 

Here ( )TD  is the Debye screening mass. Expanding with the Taylor series expansion around

0=r , the potential in Eq. (7) can be simplified to the new form1:  

( )
2

2

r

C
Lr

r

G
FrDrV −−−+=                                         (9) 

with 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )rTCrTCrTBrTB

TATBGTBTCTBD

DD

DDDDD


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=+==+=
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2/1L  ,    ,2/1-AF  ,2/1
22

 (10) 

It is well known for the physicists, that studying any physical quantum system requires 

solving the original SE given as32-33 

( ) ( ) ( )


,,,,
2

2

rErrV
P

nlmnlnlm =



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


+                               (11.1) 

where nlE is the energy, 𝜇 =
𝑚𝑒𝑚𝑍𝑒

𝑚𝑒+ 𝑚𝑍𝑒
 is the reduced mass of the hydrogenic atom ( em  and 

Zem  represent the masses of the electron e and the atom Ze, respectively). In addition, for 

the quarkonium systems, the reduced mass is 

qq

qq

mm

mm

+
. The separation of coordinates in the 

complete wave function is ( )
( )

( )


 ,,, m

lY
r

r
r = , where ( ) ,m

lY is the spherical 

harmonic function. If the radial part ( )
( )
r

r
rU nl


=  is inserted into the SE, one can get the 

radial part in two forms as follows: 
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nlnl 
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Here
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2

)1(
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r

C
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r

G
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

+
+++−+= . The complete wave function and the 

corresponding eigenvalues of the SE for the potential in Eq. (9) are given by1: 

   ( ) ( ) ( ) ( ) ,2expexp,,
2
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 (12.1)     

and 
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where ( )2

00 632 LrFrDEH nn +−−−=  , ( )GLrFrN +−=
3

0

2

0 832   and /10 r  

characterize the radius of meson  while nlC  is the normalization constant. 

 

3. SOLUTION OF MSE FOR MCICP  

3.1 Review of the generalized Bopp’s shift method  

    In this subsection, an overview or a brief preliminary for MCIQP in (NC: 3D-RSP) 

symmetries is presented. To perform this task with the physical form of MSE, it is necessary 

to replace the ordinary Hamiltonian operator ( ) pxH ,ˆ , ordinary complex wave function 











→

r  and ordinary energy nlE  by the new Hamiltonian operator ( ) pxH ciq

nc
ˆ,ˆˆ , new 

complex wave function 









→

r̂  and new values of energy
ciq

nc
E , respectively. Replacing the 

ordinary product by the Weyl Moyal star product, the MSE in (NC-3D: RSP) symmetries 

can be constructed as follows34-40: 

( ) ( ) 







=

















=










→→→→

rErpxHrErpxH ciqciq

nlciq ncnc
ˆˆˆ,ˆˆ,ˆ

             (13) 

The Bopp’s shift method41-45 has been successfully applied to RNCQM and NRNCQM 

problems using modified Dirac equation (MDE), modified Klein-Gordon equation (MKGE) 

and MSE. This method has produced very promising results for number of situations having 

a physical and chemical interests. The method reduces MDE, MKGE and MSE to the Dirac 

equation, the Klein-Gordon equation and SE, respectively under two simultaneously 

translations in space and phase ( 






pxxx

2
ˆ −→  and 






xpp

2
ˆ += ) in RQM and 

NRQM. It is based on the following new commutators22-28: 

  ( ) ( )    ( ) ( )    itptpppitxtxxx ==== ˆ,ˆˆ,ˆ  andˆ,ˆˆ,ˆ                 (14) 

The new coordinates  ( ) px ˆ,ˆ   in (NC: 3D-RSP) symmetries are defined in terms of the 

corresponding commutative counterparts ( ) px ,  in NRQM via, as follows20-26: 

( ) ( )













+−= 


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
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2
,

2
ˆ,ˆ,                       (15) 
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The above equation allows us to obtain the operators ( )22 ˆ,ˆ pr   in (NC-3D: RSP) 

symmetries36-41 as follows: 

( ) 









+=−=

→→→→

LL   ˆ,ˆ, 222222 pprrpr                     (16.1) 

Where the two couplings 
→→

L  and 
→→

L  in Eq. (16.1) are given as follows: 

132312132312    and     zyxzyx LLLLLL ++=++=
→→→→

LL      (16.2)                                 

here ( xL ,  yL and zL ) are just the components of angular momentum operator 
→

L  while the 

element of the antisymmetric matrix   equals 2/ .  Thus, the reduced SE (without star 

product) can be written as: 
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The new Hamiltonian operator ( ) pxHciq
ˆ,ˆ , can be expressed as: 
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      (18) 

The extended Cornell plus inverse quadratic potential, in (NC: 3D-RSP) symmetries, is 

suggested as follows: 
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2

2
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ˆ

ˆ
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r

C
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G
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Again, Eq. (16.1) is applied to obtain the important three terms ( rF ˆ , 
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which will be used to determine the MCIQP as: 

( ) ( )

( ) ( )









+−−=−→−++−=−→−

+−=→+−−=−→−

→→→→

→→→→

2

4222

2222

22

3

ˆ
 and ˆ

2
ˆ    ,

2ˆ

O
r

C

r

C

r

C

r

C
OLLrrLLr

O
r

F
FrrFFrO

r

G

r

G

r

G

r

G

LL

LL

 (20)                  

Substituting, Eq. (20) into Eq. (19), the MCIQP in (NC-3D: RSP) symmetries can be 

obtained as follows:     

( ) ( )
→→









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F
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22 34
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Thus, the Cornell plus inverse quadratic potential is extended by including new terms 

proportional with (
4/1 r ,

3/1 r  and r/1 ) to become MCIQP in (NC-3D: RSP) symmetries. 

Now, by making the substitution Eq. (21) into Eq. (18), the modified Hamiltonian operator 

( )rH ciq ˆ
nc

 in (NC: 3D-RSP) symmetries is found to be as follows: 

( ) ( ) ( ) ( )rHpxHrHpxH ciq

ciq

ciq

ciq nc per
,ˆ, +=                              (22)              

The operator ( ) pxH ciq ,  is just the ordinary Hamiltonian operator in ordinary commutative 

quantum mechanics:   
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2

2
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2
,
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G
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p
pxH ciq −−−++=


                             (23) 

Furthermore, the other part in Eq. (22) is proportional to two infinitesimal parameters (  

and ). It can be expressed in the following form:  

( )
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222 34
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Thus, ( )rH ciq

per
 can be considered as a perturbation term compared with the parent 

Hamiltonian operator (the principal part) ( ) pxHciq ,  in (NC: 3D-RSP) symmetries.  On 

the other hand, if ZeG = , the attractive term (
r

G
− ) becomes a Columbian potential. It 

allows both ( ) pxH ciq

nc
ˆ,ˆ  and ( ) pxHciq ,  as good Hamiltonian candidates to describe the 

Hydrogenic atoms such as
+He , 

+Be and 
+2Li under the influence of external fields in 

ordinary quantum mechanics and its extension NRNCQM.  

 

3.2  The exact modified spin-orbit spectrum for heavy quarkonium systems and 

hydrogenic atoms under MCIQP model  

 In this subsection, the same strategy, which was used exclusively in some of our 

published scientific works38-43 is applied. Under such a particular choice, both couplings (

→→

L and
→→

L ) are reproduced to the new physical forms (
→→

 SL and
→→

SL ), respectively. 

Thus, the new forms of ( ),,iq

so
rH c

 for heavy quarkonium system and hydrogenic atoms 

under MCIQP model are as follows:  

( ) ( )
→→









+







−++−→ SLL

r

F

r

G

r

C
rHrH cc






222
,,

34

iqiq

soper
               (25) 
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here 
2

13

2

23

2

12 ++= , 
2

13
2

23
2

12  ++=  and 
137

1
  is a new constant, 

which plays the role of the fine structure constant in the electromagnetic interaction or 

quantum electrodynamics (QED) theory.  Two vectors (
→

 and
→

 ) are chosen parallel to the 

spin 
→

S  of hydrogenic atoms such as
+He , 

+Be  and +2Li . Furthermore, the above perturbative 

terms ( )rH ciq

per
 can be rewritten as following new physical form: 

( ) 












−−









−







−++−=

→→→ 222

34

iq

2222
,, SLJL

r

F

r

G

r

C
rH c

so 


              (26) 

where
→

J and 
→

S defines the operators of the total angular momentum and spin of hydrogenic 

atoms (or heavy quarkonium systems). The operator 
→→

SL  produce the quantum spin-orbit 

interaction. ( ( ),,iq rH c

so
,

2J , 2L , 
2S and )zJ  forms a complete set of conserved physical 

quantities.  In addition, for spin-1/2, the eigenvalues of the spin-orbit coupling operator 
→→

SL  

are








−+++









4

3
)1()1

2

1
(

2

1
2
1 llllk . This, corresponds to two polarities, the first one 

corresponds to 2/1+= lj  (spin-up) while the second polarity corresponds to 2/1−= lj  

(spin-down). Then, a diagonal ( )33  matrix 
iqc

so
H  for MCIQP in (NC: 3D-RSP) symmetries 

can be formed as follows: 

( )
( )

( )
( ) ( ) ( )( )

33

iq

22

iq

11

iq

33

iq
22

iq
11

iq

,,

00

00

00
ccc

c

c

c

ciq

sososo

so

so

so

so
HHHdiag

H

H

H

H 

















=          (27.1) 

The non-null elements ( )
11

iqc

so
H  and ( )

22

iqc

so
H of a diagonal matrix 

iqc

so
H  are given by:  

( ) ( )

( ) ( ) 2/1 if
222

 2/1 if
222

3422

iq

3411

iq

−=








−







−++−=

+=








−







−++−=

−

+

ljL
r

F

r

G

r

C
lkH

ljL
r

F

r

G

r

C
lkH

c

c

so

so











    (27.2)                                   

here ( ) ( )( ) ( )1,
2

1
, −−−+ lllklk , j and l are the total quantum number and orbital angular 

momentum quantum number, respectively. The non-null diagonal elements ( )
11

iqc

so
H  and 

( )
22

iqc

so
H  will affect the energy values nE by creating two new values 

ciqE
u

 and
ciqE
d

 , 

respectively. Details of these are given in the next subsection. After a profound calculation, 
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it can be shown that the two new radial Schrödinger equations for ( )rU nl  and ( )rnl  satisfy 

the following differential equations for MCIQP, respectively: 

( ) ( ) ( ) ( ) 02
2

2

2

=−++ − rUVE
dr

rdU

rdr

rUd
nl

ciq

effnc

ciqnlnl

nc
  

 
( ) ( ) ( ) 02

2

2

=−+ − rVE
dr

rd
nl

ciq

effnc

ciqnl

nc



                      (28.1) 

The new effective potential for MCIQP ciq

effncV −  in (NC: 3D-RSP) symmetries is given by: 





222 34

→→
→→

− +







−++−=

L
LL

r

F

r

G

r

C
VV ciq

eff

ciq

effnc                     (28.2) 

Eq. (24) indicates that ( )rH ciq

per
 is proportional to two infinitesimals parameters (  and ). 

Thus the modified radial part, that is, equation (28.1) is solved by applying the standard 

perturbation theory to find acceptable solutions at the first order of two parameters   and

. The proposed solutions for MSE under MCIQP include energy corrections. Those 

corrections are produced automatically from two principal physical phenomena, the first one 

is the effect of modified spin-orbit interaction and the second one is the modified Zeeman 

effect. Furthermore, the stark effect that appears in the linear part of MCIQP can also be 

observed. 

3.3 The exact modified spin-orbit spectrum for hydrogenic atoms under MCIQP 

model  

 The purpose of this sub-section is to give a complete description of the determination 

of the energy level of hydrogenic atoms such as
+He , 

+Be and 
+2Li under MCIQP. To 

achieve this goal, we first find the corrections 
ciqE
u

  and  
ciqE
d

 for hydrogenic atoms. Those 

corrections have two polarities up and down corresponding to 2/1+= lj  and 2/1−= lj , 

respectively, at the first order of the two parameters (  and ).  This is obtained  by applying 

the standard perturbation theory as follows: 

( ) ( ) ==
22

iq

11

iq

du
  and  cciqcciq

soso
HEHE                           (29.1) 

By inserting  =
→→

13rdrr , the above equation is easily rewritten in the equivalent form: 

( ) ( ) dr

L
r

F

r

G

r

C

rHr
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d
rrHrkCE n

H

N
nn

n

H

N
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





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

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
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











−








−−=

−−+−+

+





2

2

2
2exp2exp

34

2

2
2

2

0

2   
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( ) ( ) dr

L
r

F

r

G

r

C

rHr
dr

d
rrHrkCE n

H

N
nn

n

H

N

nl
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d
nn




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
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
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


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
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
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−



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2      (29.2) 

Here the orthogonality property of the spherical harmonics ( ) ( ) ( )  ddYY m

l

m

l sin,, '

'
 

'' mmll=  is used. Now, the above two equations can be further simplified to the new form: 

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )









−







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
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5
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







   (30) 

Moreover, the expressions of the five factors ( )5,1=iTi  are given by: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) drrHr
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d
rrHr

F

HNnFT
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d
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H
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H
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H
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H
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 (31.2) 

For the ground state, the expressions of the five factors ( )5,1=iTi  can be simplified as 

follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )  2exp,,0
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 (32) 
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where ( )2

0000 632 LrFrDEH +−−−=  . It is convenient to apply the following special 

integral48: 

( ) 







=−

−
+

−

 pp
dxxx

p
p 







0

1 exp                                  (33) 

with conditions ( 0Re   , 0Re   and 0p ) while ( ) ( ) ( ) 1/

0

exp/ −

+

 −= pttp   is the ordinary 

Gamma function.  After straightforward calculations, the following explicit results can be 

obtained: 
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       (34)  

The exact modifications ( )0,,0,,,,,
u

HNnLFGCkE ciq
=+  and  ( )0,,0,,,,, HNnLFGCkE ciq

d =−
 

of the ground state can be obtained as follows: 
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with ( ) ( ) ( ) ( ) ( )04031201001 ,,0,,,0,,,0,,,0,,,,,,,0, HNLTHNFTHNGTHNCTHNLFGCCT +++= . For 

the first excited state, the expressions of the five factors ( )5,1=iTi  are given by: 
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(36.2) 

where ( )2

0011 632 LrFrDEH +−−−=  , 11 2 H= , 2−=   and 
1H

N
−= . 

Evaluating, the integrals shown in Eqs. (36.1) and (36.2) by applying the special integral 

given by Eq. (33), the following results can be obtained as exact modifications 
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 (37)      

As mentioned previously, this energy is produced with the effect of induced spin-orbit 

interaction at the first excited state as follows: 
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Where the factor 

( ) ( ) ( ) ( ) ( )14131211111 ,,1,,,1,,,1,,,1,,,,,,,1 HNLTHNFTHNGTHNCTHNLFGCT +++= .  Furthermore, 

in the same manner as before, the exact modifications ( )n

ciq HNnLFGCkE
u

,,,,,,,+   and 

( )n

ciq HNnLFGCkE
d

,,,,,,,+  for 
thn  excited states can be found as follows: 
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where ( ) ( ) ( ) ( )nnnnn HNnLTHNnFTHNnGTHNnCTT ,,,,,,,,,,,, 43211 +++=   and 

( ) =nHNnT ,,5 ( )nHNnLLT ,,,4− . The result shown in the Eq. (39) is specific to 

hydrogenic atoms such as
+He , 

+Be and +2Li  . 

3.4  The modified magnetic spectrum for hydrogenic atoms under MCIQP model  

 In addition to the important results obtained previously, another important physically 

meaningful phenomenon produced by the effect of MCIQP related to the influence of an 

external uniform magnetic field
→

B  is considered. Moreover, to achieve this without repeating 

the previous calculations, it is sufficient to apply the following replacements: 

→→→→

→→ BB       and                                          (40.1) 

to make the following changes. 
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Here   and   are two infinitesimal real proportional constants. The arbitrary uniform 

external magnetic field 
→

B  is chosen to be parallel to the (Oz) axis. The new modified 

magnetic Hamiltonian ( ) ,,rH ciq

m  in (NC: 3D-RSP) symmetries can be written as:  

( ) ( ) 



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
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
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z

cc JBL
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C
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mq 


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222
,,,,

34

iqiq

so
      (41)               

here 
→→

− BSz  denotes the Zeeman effect in commutative quantum mechanics, while 

zz JB −
→→

−mod is the new Zeeman effect. Now, to obtain the exact NC magnetic 

modifications of energy ( )0,,0,,,,,0 HNnLFGCmE ciq

m == , ( )1,,1,,,,,1,0 HNnLFGCmEciq

m ==   and 

( )n

ciq

m HNnLFGCllmE ,,,,,,,,+−=    corresponding to the ground state, the first excited state and 

the 
thn  excited states, respectively,  of hydrogenic atoms such as

+He , 
+Be  and 

+2Li , replace 

one of two factors ( +k  or −k ) in the Eqs. (35) and (38) by the magnetic quantum number m  

and the infinitesimal parameter   by the new infinitesimal coefficient  . Thus, the 

following results can be obtained: 
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Since lml +− , ( 12 +l ) values can be fixed for the discreet number m . It should be noted 

that the results obtained in Eq. (42) can be found by direct calculation 

( )=  ,,rHE ciqciq

m m
that makes the following explicit relation: 
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This can be rewritten as the equivalent form: 
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Then the corrections produced by the Hamiltonian operator ( ) ,,rH ciq

m  for the ground state 

and other excited states can be found by repeating the same calculations in the previous 

subsection. 

 

4. GLOBAL SPECTRUM OF THE HYDROGENIC ATOMS UNDER MCIQP AT 

FINITE TEMPERATURE: 

 In the previous sections, the solution of the MSE for the hydrogenic atoms such as (
+He , 

+Be and
+2Li ) under the MCIQP model was obtained as Eq. (22) by using the 

generalized Bopp’s shift method and standard perturbation theory. The corrections

( )0,,0,,,,,
d)-(u

HNLFGCkE ciq

 ,  ( )0,,1,,,,,
d)-(u

HNLFGCkE ciq

  and ( )0,,,,,,,
d)-(u

HNnLFGCkE ciq

  

have also been obtained. Two polarities up and down corresponding 2/1+= lj  and

2/1−= lj , for the ground state, the first excited state and the generalized excited states, 

respectively have also been seen.  Those corrections were produced with the effect of 

induced spin-orbit operator and the modified Zeeman effect operator in the (NC: 3D-RSP) 

symmetries. Now, the modified eigenenergies ( )( )0,,,,,,0,0, HNLFGCmEE dciq

nc

uciq

nc = , 

( )( )1,,,,,,1,0,1, HNLFGCmEE dciq

nc

uciq

nc =  and ( )( )n

dciq

nc

uciq

nc HNLFGCllmnEE ,,,,,,,,, +−=    with 

spin-1/2 based on our original results, which were presented as Eqs. (35), (38), (39) and (42) 

can easily be deduced, in addition to the energy nlE  for CIQP in the Eq. (12.1), as follows: 
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Where the two values of energies 0E  and 1E  of the ground state and the first excited state 

are given as follows: 
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                     (45)                                

This is one of the main objectives of our research. Note that the obtained eigenvalues of 

energies are real and the NC diagonal Hamiltonian ( ) pxH ciq

nc
,  is Hermitian. Furthermore, 

it is possible to write the three elements ( )
11

ciq

nc
H , ( )

22

ciq

nc
H  and ( )

33

ciq

nc
H  as follows: 

( ) ( ) ( ) ( ) ( ) ),,(,,
332211

ciqciqciqciq

ciq ncncncnc
HHHdiagpxHpxH →                          (46.1) 

Where ( ) uciqncciq HH
nc int211

+


−=


, ( ) dciqncciq HH
nc int222

+


−=


  and ( ) ( )rVH ciq
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nc
+


−=

233
 

while the new kinetic term is given by: 

 




 222
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=


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 LLnc                                         (46.2) 
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and the two modified interactions elements ( )dciquciq HH
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Thus, the kinetic term for CIQP model (
2


− ) and the interaction term appear in the Eq. 

(6), are replaced by a new modified form of kinetic term 
2

nc
 and new modified interactions 

(
uciqH
int

 and dciqH
int

) in (NC-3D: RSP) symmetries. On the other hand, it is evident to consider 

the quantum number m  takes ( 12 +l ) values and the global momentum operator takes two 

values 
2

1
+l  and

2

1
+l .  Thus, every state in usual three-dimensional space of energy for 

hydrogenic atoms under MCIQP will become double ( )122 +l sub-states. To obtain the total 

complete degeneracy of energy levels of hydrogenic atoms in (NC-3D: RSP) symmetries, 

all allowed values of l are to be added. Total degeneracy is thus, 

( ) ( )  412222122 2
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                           (48) 

Thus, the total complete degeneracy of the energy level of the MCIQP model will be 

doubled. This gives a very good indicator that our new treatment produces clear energy 

values when compared with similar energy levels obtained in NRQM. Note that the 

obtained energy eigenvalues ( ) ( )( )n

dciq

nc

uciq

nc HNLFGCllmnEE ,,,,,,,,, +−=  now depend on 

new discrete atomic quantum numbers ( )sljn ,,,  and m in addition to the parameters (

NLFGC ,,,, ) of the potential. 
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5. GLOBAL SPECTRUM OF THE QUARKONIUM SYSTEMS UNDER MCIQP 

MODEL AT FINITE TEMPERATURE: 

 The second main principle goal of this work is to treat the case of systems with spin-

1/2, for example, the quarkonium systems, such as the charmonium cc , bottomonium bb  

and mesons sc . It is well known that the eigenvalues j  of total operator 
→

J  can be obtained 

from the interval sljsl +− . This allows us to obtain the eigenvalues of the coupling 

operator 
→→

SL  as ( ) )1()1()1(,, +−+−+ sslljjsljk .  Then the nonrelativistic energy 

spectrum ( ) ( )( )n

ciq

nc HNLFGCllmsljknE ,,,,,,,,,,, +−=  of the quarkonium systems can be 

obtained directly from the Eq. (44.3). We need to replace one of three factors (
+k  or 

−k  and

 ) by the new two factor ( )sljk ,,  and sg  which represent the strong coupling in the QCD 

theory.  This is to avoid repeating previous calculations. This allows us to get the following 

results: 
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Our last application is to calculate the mass spectra of the heavy quarkonium system such as 

charmonium, bottomonium that have the quark and antiquark flavor and mesons sc  under 

MCIQP model at finite temperature.  To achieve this goal first the mass formula of 

quarkonium in 3-dimensional space is recalled49-51: 

nlq EmM += 2                                                     (50) 

In order to achieve this goal, the traditional formula 
nlq EmM += 2  is generalized to the 

new form: 
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here qm  is a bare mass of quarkonium or twice the reduced mass of the system and 
ciq
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E  is 

the energy in NRNCQM symmetries.  Thus, at finite temperature 0T for the modified 

mass of quarkonium systems          
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M , the following equation is obtained: 
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here M is the heavy quarkonium system at a finite temperature under CIQP in NRQM1. 

Now, the Eq. (49) is applied on the charmonium, bottomonium and mesons sc . It is well 

known that the spin of charmonium, bottomonium and mesons sc  are equal to two values 

(0 or 1). For the case of spin-1, from the interval 11 +− ljl , three values of j  ( 1−l , l

and 1+l ) are provided. These three values are allowed to be fixed as 

( ) ( ) ( )( ) ( )22,2,
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1
,, 321 −−− lllklklk .  Thus, the three values of energy are given by. 
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Thus, the modified mass of the charmonium cc , bottomonium bb  and mesons sc  becomes: 
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here ( ) ( ) ( )( )112/
3

1
321 −−=+−=+= lkEkElkE ciqciqciq

ncncnc

 are the non-polarized energies (energy 

independent of spin). For the case of spin-0, j  is equal only to one value of l , which 

allows the null values of ( )sljk ,,  to be obtained.  Thus, the modified mass of quarkonium 

system 
ciq

nc
M  can be taken as the following new result: 

( ) ( )




+=
0-spinfor   

1-spinfor
,,,,,,,,,,,,,

2

12

M

M
CgHNLFGCMHNLFGCmlnM nlsnn

ciq

nc
   (55)                 

Here, the two perturbative masses 







=

→→

11 SM  and 







=

→→

02 SM  are given by: 
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   (56)        

Finally, the contribution for the hydrogenic atoms, such as (
+He , 

+Be and +2Li ) is obtained. 

The ordinary energy nlE  in NRNCQM will be modified by two values 
upE  and downE , 

which correspond to the two polarities up and down, in the symmetries of NRNCQM, as 

follows:  
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(57) 

Moreover, for the quarkonium system such as the charmonium cc , bottomonium bb  and 

mesons sc , the ordinary energy nlE  will be modified by new additive part ciq

nc
E  , in the 

symmetries of NCQM. This modification is given by:  
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here ciq

nc
E  represents the difference between the two values ( )( )n

ciq HNLFGCllmsljknE
nc

,,,,,,,,,,, +−=   

and nlE . 

 

6. MAIN RESULTS 

 The present work is divided into two-fold. The goal of the first part was to find a 

solution of the MSE for the hydrogenic atoms such as (
+He , 

+Be and
+2Li ) under MCIQP 

using the generalized Bopp’s shift method and standard perturbation theory. The energy 

eigenvalue is calculated in the (NC: 3D-RSP) symmetries. The modified eigenenergies 

( )( )0,,,,,,0,0, HNLFGCmEE dciquciq

ncnc
= , ( )( )1,,,,,,1,0,1, HNLFGCmEE dciquciq

ncnc
  and

( )( )n

dciquciq HNLFGCllmnEE
ncnc

,,,,,,,,, +− ) and corresponding Hamiltonian operator

( ) pxH ciq

nc
,  are obtained. In the second part, the eigenvalues expressions for the 

quarkonium systems such as the charmonium cc , bottomonium bb  and mesons sc  are 
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obtained. It should be noted that our results in recent work are in good agreement with the 

results already exist in literature in NCQM where the physical treatment was done using 

other potentials such as new modified potential containing Cornell, Gaussian and inverse 

square terms 40 and modified quark-antiquark interaction potential 52. If ( ) ( )0,0, →   is 

considered, the results of the commutative space of first reference40 obtained for the Cornell 

plus inverse quadratic potential at finite temperature can be reproduced. This limiting 

condition reproduces the results exist in literature. 

 

7. CONCLUSION 

 This paper is devoted to solving the MSE for the modified Cornell plus inverse 

quadratic potential at finite temperature. Our work has been organized around two major 

parts. In the first part, nonrelativistic spectrum of hydrogenic atoms such as
+He , 

+Be  and 
+2Li which interacted with this potential at finite temperature was considered. The energy 

spectra of the quarkonium systems, such as the charmonium cc , bottomonium bb  and 

mesons sc  were considered in the second part. The generalized Bopp’s shift method and 

standard perturbation theory in the (NC: 3D-RSP) symmetries were applied; the main results 

obtained are summarized below. 

• Ordinary interaction ( ( )
( )

( ) 2,
,

, rrTC
r

rTB
rrTA +− ) in NRQM was replaced by new 

modified interactions according to the results shown in Eq. (47), 

• The ordinary kinetic term was modified to the new form in Eq. (46.1) for heavy 

quarkonium systems and hydrogenic atoms under the influence of MCIQP model, 

• The perturbative corrections for the ground state, the first excited state and the 

generalized excited states with spin-1/2 and spin  1/2 have been obtained as results 

shown in Eqs. (44.1), (44.2), (44.3), respectively. In addition, the energy for heavy 

quarkonium systems under the influence of MCIQP was shown in Eq. (49), 

• The modified mass of quarkonium systems 
ciq

nc
M  for spin- (0 or 1) have been obtained 

at finite temperature ( 0T ). The mass values were equal to the sum of the 

corresponding value M  in NRQM and two perturbative terms proportional to two 

parameters ( or  ) and ( or ), 

• The MCIQP was suggested as an effective potential for quark–antiquark interaction 

at finite temperature. It describes hydrogenic atoms because the global potential 

contains a Coulomb potential term in the (NC: 3D-RSP) symmetries. 

• The energy eigenvalues corresponding to ( ) ( )0,0, →   which were obtained here 

can be reduced to the result obtained in Ref.1 for the SE in three-dimension subjected 

to the Cornell plus inverse quadratic potential at finite temperature. 

The important results of this article are the ability and capability of the MSE to play a vital 

role in calculating and describing many phenomena as in high-energy physics (HEP).  The 
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solutions of the MSE are important for calculating the mass of quarkonia such as 

charmonium cc , bottomonium bb , and mesons sc  with spin (0 or 1) under MCIQP at finite 

temperature in (NC: 3D-RSP) symmetries.  

Here a new theoretical model in the field of (NC: 3D-RSP) symmetries has been presented.  

Furthermore, energy values which appeared quantitative and interesting have been obtained. 

This can be considered as a revolution at the theoretical level.  Presently, technological 

applications for this model are being worked out. 
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