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We explore the new analytical solutions for both bound and the new masses of mesons 

of the Klein–Gordon equation with the modified central complex potential, which 

describes the heavy-light qQ , ( )sduqcQ ,/, ==  mesons and the quarkonium 

system qq , ( )sbcq ,,= via the standard Bopp’s shift method and standard perturbation 

theory.We have obtained the energy eigenvalues of the ground state
( ) ( )mljbaE
nc

,,,0,,0
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,,,1,,1
 and thp the excited state 
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terms of the shift energy ( ( )msljEcc ,,,,0 , ( )msljEcc ,,,,1 and ( )msljpEcc ,,,, ) and 

( lE0 , lE1  and nlE ) of ordinary relativistic quantum mechanics. In addition to the 

parabolic cylinder functions, the Gamma function, the discreet atomic quantum 

numbers ( )mslj ,,, , the potential parameters ( a and b ) and the noncommutativity 

parameters ( and ). In the second part of the research, we will apply the obtained 

results to calculate the new masses of the mentioned previously mesons in the 

symmetries of the relativistic three-dimensional noncommutative quantum mechanics. 

Moreover, some important special cases in the context of the symmetries of the 

relativistic three-dimensional noncommutative quantum mechanics are treated. 
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1.  INTRODUCTION  

An adequate understanding of the quark behavior of two interacting quarks as a function 

of their relative positions is very pertinent in different fields of sub-atomic and 

elementary particles using various potential schemes. Recently, there has been a great 

interest in obtaining quark potential energy functions governing the interaction of two-

quarks (mesons model) 1-10. In particular, the complex potentials such as exponential 

type complex and non-Hermitian potentials, generalized Hulthén potential in complex 

quantum mechanicsand central complex potentials rbiarrV /)( += were played a 

crucial role in particle physics as well as in nuclear physics11-13. In addition, this 

potential is suggested as a quarkonium physics or quark-antiquark interaction potential 

for studying the masses of the heavy-light qQ , ( )sduqcQ ,/, == mesons and the 

quarkonium system qq , ( )sbcq ,,= in relativistic three-dimensional noncommutative 

quantum mechanics, in which the potential satisfied the features of quantum 

chromodynamics theory of strong interaction14. In this paper, the recent progress made 

by authors V. K. Srivastava and S. K. Rose to motivate us in their studies13.  

In this paper, motivated bymany various recent studies for example the non-

renormalizable of the electroweak interaction,quantum gravity, string theory, the 

noncommutative relativistic quantum mechanics has attracted much attentionto physical 

researchers15-21. 

This paper aims to understand the central complex potential in large space known by 

relativistic noncommutative quantum mechanics to achieve a more accurate physical 

vision so that this study becomes valid in the field of nanotechnology. On the other 

hand, to explore the possibility of creating new applications and more profound 

interpretations in the sub-atomics and nano scales using a new version of the modified 

effective relativistic central complex potential, which has the following form: 
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here 12 −=i , a  and b  are the real positive potential parameters and r is the interquark 

distance while the coupling 
→→

L  is interpreted as the interaction between the angular 

momentum operator and noncommutativity properties of space-space. In this paper, we 

have introduced the modified central complex potential, which takes the following form: 
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It should be noted that the noncommutativity was introduced firstly by W.Heisenberg22 

in 1930 and then by H.Syndre23 in 1947. Up to our knowledge, no attempts to study the 

modified central complex potential using Bopp’s shift method. The new structure of the 

relativistic noncommutative relativistic quantum mechanicsbased on new NC canonical 
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commutations relations in Schrödinger, Heisenberg and interactions pictures, 

respectively, as follows24-29 (Throughout this paper, the natural units 1== c  will be 

used): 
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here 0ttT − while ( )ii

S

i px = , ( ) ( )( )tpxt ii
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i =  and ( ) ( )( )tpxt IiIi

I

i =̂  are the 

three representations in relativistic quantum mechanics.The dynamics of new systems 
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i ) are described from the following motion equations in relativistic 

noncommutative relativistic quantum mechanics: 
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(4) 

where ccĤ ( cc

o
Ĥ )and cc

nco
Ĥ ( cc

nco
Ĥ ) represent the global quantum Hamiltonian (the 

unperturbed Hamiltonian)operators for complex potential and modified complex 

potential in the relativistic quantum mechanics and its extension, respectively. The very 

small parameter ij  (compared to the energy) are elements of theantisymmetric real 

matrix and ( )  denote the Weyl Moyal star product, which is generalized between two 

arbitrary functions ( ) ( )xfg   to the new form ( ) ( ) ( )( )xgfxgxf ˆˆˆˆ  in relativistic three-

dimensional noncommutative quantum mechanicssymmetries30-42: 
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which ( )2O  stands for the second and higher-order terms of the infinitesimal 

parameter . The second in the above equation presents the effects of (space-space) 
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noncommutativity properties. The objective of this study is two-fold; firstly, we solve 

the modified Klein-Gordon equation with the modified central complex potential using 

the Bopp’s shift method and standard perturbation theory, we apply the energy equation 

obtained to study atomic behavior in some selected the heavy-light qQ , 

( )sduqcQ ,/, ==  mesons, and the quarkonium system qq , ( )sbcq ,,= of this potential. 

While we deal in the third part of some important special cases. The scheme of our 

research article is as follows. Section 1 has the introduction, a brief description of the 

eigenfunctions and the energy eigenvalues for the central complex potential in the 

relativistic quantum mechanics is reviewed in section 2. In section 3, the modified radial 

Klein-Gordon equation with the modified central complex potential is solved via the 

standard Bopp’s shift method and the standard perturbation theory. In the next section, 

we apply our results to calculating the new masses of heavy-light qQ , 

( )sduqcQ ,/, ==  mesons and the quarkonium system qq , ( )sbcq ,,= , then, we present 

a special case of the potential under consideration.Finally, we discuss some particulars 

casesin section 5 before the conclusion in section 5. 

 

2. OVERVIEW OF THE RELATIVISTIC ENERGY LEVELS AND 

WAVE FUNCTION FOR CENTRAL COMPLEX POTENTIAL  

As already mentioned, we aim to obtain the relativistic spectrum of the modified central 

complex potential rbiarrVcc /)( +=  in a three-dimensional relativistic noncommutative 

quantum equation. In spherical coordinates, the Klein-Gordon equation with the scalar 

potential )(rS cc and the vector potential )(rVcc is given by ( 1== c ): 
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222 =−+−− rrVErSM cccc          (6) 

If the wave function is selected as ( ) ( ) ( ) ,,, m

lpl YrRr =  and after the necessary 

calculations are done, the radial part of the Klein–Gordon equation ( )rRl  is obtained as 

the following form: 
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where l is eigenvalues of the angular momentum. For removing the derivation of the first 

order, we introduce ( )
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r
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Based on the ref. [13], the complete wave function is the following: 
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Where 
ia  can be determined by the normalization condition, 

2/1−==  ( ) 22
2/1 bl −+ , a= and pp Ea= .Also, the energy plE  of the relativistic 

potential obtained from the following relation: 
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It is a worth motion that the potential used in the paper should satisfy the Coulomb force 

proportional to ( )2/ rb− which expresses the asymptotic nature of the strong interaction 

at short distances and the confinement forceproportional to ( )ia−  produced from the 

linear part for describing the interaction between light and heavy mesons at large 

distances.This physical behavior is quite similarto the Cornell potential43-44.It can also be 

said that the physical behavior of the studied potential, in ordinary nonrelativistic 

quantum mechanics, is similar to the trigonometric Rosen–Morse potential (suggested as 

a quark-antiquark interaction potential)which is as a function of distance r for the exact 

and approximate potential on the second page of the Ref.6. 

 

3. SOLUTION OF MODIFIED KLEIN-GORDON EQUATION FOR 

SOLUTION OF MKG MODIFIED CENTRAL COMPLEX 

POTENTIAL  

    In this section, we shall give an overview or a brief preliminary for the modified 

central complex potential in relativistic three-dimensional noncommutative quantum 

mechanicssymmetries. To perform this task the physical form of modified Klein-Gordon 

equation it is necessary to apply the notion of the Weyl Moyal star product on the 

differential equation satisfied by the radial wave function ( )rU pl  in Eq. (7), thus, the 

radial wave function ( )rU pl  in relativistic three-dimensional noncommutative quantum 

mechanicssymmetries become25-29: 
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The Bopp’s shift method has been successfully applied to the relativistic 

noncommutative quantum mechanics and nonrelativistic noncommutative quantum 

mechanics problems using a modified Dirac equation, modified Klein-Gordon equation 

and modified Schrödinger equation. This method has produced very promising results 

for several situations having physical, chemical interest30-36. The method reduces three 

modified fundamental equations (modified Dirac equation, modified Klein-Gordon 

equation and modified Schrödinger equation) to the (Dirac equation, Klein-Gordon 

equation and Schrödinger equation), respectively, under the simultaneous translation in 

space. It based on the following new commutator34-42: 

  ( ) ( )   itxtxxx == ˆ,ˆˆ,ˆ                     (11) 
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The new operator ( )rVcc
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The additive part of the effective potential is proportional to the infinitesimal 

vector zyx eee 131211 ++=
→

.Thus, we can consider ( )( )rrV cc

pert  as perturbation 

terms compared with the parent potential (effective potential operator) ( )( )rrV cc

eff
 in the 

relativistic three-dimensional noncommutative quantum mechanics symmetries. The 

purpose here is to give a complete prescription for determining the energy level of the 

ground state, the first excited state and thp excited state, by applying the perturbative 

theory, in the case ofthe relativistic noncommutative relativistic quantum 

mechanics.In the first-order perturbation theory the expectation value of 1−r , 3−r  and 
4−r concerning the exact solution of Eq. (7), is given by: 
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drrrrramlprmlp

rdrrrramlprmlp

p

n

n

n

p

n

n

n

p

n

n

n













                              (20) 

Allows us to simplify Eqs. (18) and (19) to the new form: 

( )

( )

( )





+

−−−

+

−−−

+

−−

−−=

−−=

−−=

0

0

21322

0

4

0

0

21222

0

3

0

0

2122

0

1

2exp,,0,,0

2exp,,0,,0

2exp,,0,,0

drrrramlrml

drrrramlrml

drrrramlrml













                                (21) 

and 
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( ) ( )

( ) ( )

( ) ( )





+

−−−−−−−

+

−−−−−−−

+

−+−+−−−

−−++=

−−++=

−−++=

0

2

1

2122

10

1122

1

422

0

4

0

1

1

2112

10

122

1

1222

0

3

0

1

2112

10

1222

1

1122

0

1

2exp2,,1,,1

2exp2,,1,,1

2exp2,,1,,1

drrrrraararamlrml

drrrrraararamlrml

rdrrrraararamlrml













  (22) 

We have used the orthogonality property of the spherical 

harmonics ( ) ( ) ( ) = ''

'

' sin,, mmll

m

l

m

l ddYY  . It is convenient to apply the 

following special integral53: 

( ) ( ) ( ) 















=−− −

−−

+









 




28
exp2exp

2

2
2.1

.

0

Ddxxxx          (23) 

Where 







−






2
D  and ( ) denote to the parabolic cylinder functions and Gamma 

function. After straightforward calculations, we can obtain explicit results: 

( ) ( )



























= −

−−

02

2

02

0

1 2

2
exp22,,0,,0 




 


Damlrml               (24.1) 

( ) ( ) ( ) 


























−= −−

−
−−

022

2

0
2

22
2

0

3 2

2
exp222,,0,,0 




 



Damlrml            (24.2) 

( ) ( ) ( ) 


























−= −−

−
−−

032

2

0
2

32
2

0

4 2

2
exp322,,0,,0 




 



Damlrml            (24.3) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )112
2

12

10122
2

22
2

1

112
2

12
2

0

2

11

1222222

122
2

exp,,1,,1




















+−

+
−

+−

+
−

−−

−
−−

++++

−=













−

DaaDa

Damlrml

(25.1)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )112
2

12

1012
2

2
2

1

122
2

22
2

0

2

13

122222

222
2

exp,,1,,1




















−−

−
−

−

−

−−

−
−−

−++

−=













−

DaaDa

Damlrml
(25.2) 
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( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )122
2

22

10112
2

12
2

1

142
2

42
2

0

2

14

2222122

422
2

exp,,1,,1




















−−

−
−

−−

−
−

−−

−
−−

−+−+

−=













−

DaaDa

Damlrml
(25.3) 

With 11

2



 = . We have two principals cases, the first one corresponds to replace 

→→

L  

by 
→→

 SL  (
2

13

2

23

2

12 ++= ), we have chosen the vector
→

  parallel to the spin 

→

S  and we replace 
→→

 SL by 












−−

 →→→ 222

2
SLJ . The set ( ( ),rH cc

so
, 2J , 2L , 2S and )zJ  

forms a complete of conserved physics quantities, the eigenvalues of the spin-orbit 

coupling operator are ( ))1()1()1(
2

1
)( +−+−+ sslljjlk , with sljsl +− . 

Allows us to obtain the energy shift ( )sljE ,,,0 , ( )sljE ,,,1  and ( )sljnE ,,, due to the 

spin-orbital complying induced by ( )rV cc

pert
 in the relativistic three-dimensional 

noncommutative quantum mechanics symmetries as follows (Starting now we will use 

the following shorthand notation
( )

mlpAmlpA
mlp

,,,,
,,

= ): 

( ) ( ) ( )
( )

( )
( ) ( )

( )( )
mlmlml

rbriaMErlllksljE
,,0

3

,,0

1

0
,,0

41,,,0 −−− −+−+=
     

(26.1) 

( ) ( ) ( )
( )

( )
( ) ( )

( )( )
mlmlml

rbriaMErlllksljE
,,1

3

,,1

1

1
,,1

41,,,1 −−− −+−+=
        

(26.2) 

( ) ( ) ( )
( )

( )
( ) ( )

( )( )
mlpmlp

p
mlp

rbriaMErlllksljpE
,,

3

,,

1

,,

41,,, −−− −+−+=
   

(26.3) 

The second case corresponds to replace both (
→→

L  and 13 ) by ( zBL13  and B13 ) in 

addition to use ''''',',',, mmllnnz mmlnLmln =  (with lml +− ). Allows us to obtain 

the energy shift ( )mEcc ,0 , ( )mEcc ,1  and ( )mpEcc , due to the modified Zeeman 

effect induced by ( )rV ccpert− in the relativistic three-dimensional noncommutative 

quantum mechanics symmetries as follows: 

 

( ) ( )
( )

( )
( ) ( )

( ) BmrbriaMErllmE
mlmlml

cc
,,0

3

,,0

1

0
,,0

41,0 −−− −+−+= 
    

(27.1) 

( ) ( )
( )

( )
( ) ( )

( ) BmrbriaMErllmE
mlmlml

cc
,,1

3

,,1

1

1
,,1

41,1 −−− −+−+=        (27.2)  

( ) ( )
( )

( )
( ) ( )

( ) BmrbriaMErllmpE
mlpmlp

p
mlp

cc
,,

3

,,

1

,,

41, −−− −+−+= 
   

(27.3) 

The superposition principle permitted to deduce the additive energy 

shift ( )msljEcc ,,,,0 , ( )msljEcc ,,,,1  and ( )msljpEcc ,,,, due to the spin-orbit 

complying and modified Zeeman effect which induced by ( )rV cc

pert
in the relativistic three-

dimensional noncommutative quantum mechanics symmetries as follows: 
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( ) ( )( ) ( )
( )

( )
( ) ( )

( )( )
mlmlml

cc rbriaMErllmBlkmsljE
,,0

3

,,0

1

0
,,0

41,,,,0 −−− −+−++=  (28.1) 

( ) ( )( ) ( )
( )

( )
( ) ( )

( )( )
mlmlml

cc rbriaMErllmBlkmsljE
,,1

3

,,1

1

1
,,1

41,,,,1 −−− −+−++=  (28.2) 

( ) ( )( ) ( )
( )

( )
( ) ( )

( )( )
mlpmlp

p
mlp

cc rbriaMErllmBlkmsljpE
,,

3

,,

1

,,

41,,,, −−− −+−++=  (28.3) 

When we look to the expressions of effective central complex potential ( )rV cc

eff
 and 

effective energy cc

eff
E , it is clear that the energy values cc

eff
E have a carry unit of energy, 

thus we can deduce explicitly the energy of ground state 
( ) ( )mljbaE
nc

,,,0,,0
, first excited 

state 
( ) ( )mljbaE
nc

,,,1,,1
 and thp the excited state 

( ) ( )mljnbaE p

nc
,,,,, as a function of the 

shift energy ( ( )msljEcc ,,,,0 , ( )msljEcc ,,,,1 and ( )msljpEcc ,,,, ) and (
0E , 1E  and 

pE ) as follows : 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( ) 2/12/12

2/12/121

2/12/120

,,,,1/1222,,,,,

,,,,11/322,,,1,,

,,,,01/122,,,0,,

msljpEapabMMmljpbaE

msljEaabMMmljbaE

msljEaabMMmljbaE

cc

n

cc

cc

nc

nc

nc

−++++−=

−+++−+=

−+++−+=













(29) 

4. NEW MASSES OF QUARKONIUM SYSTEM IN RELATIVISTIC 

NC QUANTUM MECHANICS SYMMETRIES 

Now, we want to apply Eq. (28) on the bosonic particles like heavy-light qQ , 

( )sduqcQ ,/, ==  mesons, and the quarkonium system qq , ( )sbcq ,,= with a non-null 

spin that have the quark and antiquark flavor, it is well known that the spin of 

charmonium and bottomonium equal two values (0 or 1) because it is a consisted of 

quark and anti-quark. For spin-one, we have 11 +− ljl , thus we have three values 

of ( )1,,1 321 −==+= ljljlj , allows us the corresponding three values 

( ) ( ) ( )( ) ( )22,2,
2

1
,, 321 −−− lllklklk  and thus, we three values of energy: 

( )( ) ( ) ( )( )
2/1

2/12

1
2

1/1222,,1,,,, 















++++++−=+=  m

l
apabMMmlljnbalkE cc

nc  (30.1) 

( )( ) ( ) ( )( ) ( )  2/12/12

2 1/1222,,,,,, mapabMMmlljnbalkE cc

nc  +−+++++−==  (30.2) 

( )( ) ( ) ( )( )
2/1

2/12

3

2

1

1/1222,,1,,,,

















+

+
−+

++++−=−= 

m
l

apabMMmlljnbalkE cc

nc





(30.3) 

with ( ) ( )
( )

( )
( ) ( )

( )
mlpmlp

p
mlp

rbriaMErllmsljp
,,

3

,,

1

,,

41,,,, −−− −+−+=
            

(31) 

The mass of the heavy-light qQ , ( )sduqcQ ,/, ==  mesons, and the quarkonium 

system qq , ( )sbcq ,,= can be obtained in the symmetries of ordinary quantum 
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mechanics by applying the following formula5-6, 54-55:  







++

+
=

dcucscEmm

ssbbccEm
M

plqq

plq

  and   ,:for

  and     , :for2

               

(32) 

Here qm are bare quark masses for heavy-light qQ , ( )sduqcQ ,/, ==  mesons and the 

quarkonium system qq , ( )sbcq ,,= and M  denote to the mass the charmonium cc , 

bottomonium bb , charmonium cc , ss and mesons sc in the relativistic quantum 

mechanics under ordinary complex potential. Thus, the modified mass of heavy-

light qQ , ( )sduqcQ ,/, ==  mesons and the quarkonium system qq , 

( )sbcq ,,= become as follows:  

( )
( )( )

( )( )












++

+

=





=

=

3

1

3

1

   and   ,:for  ,,,,,,
3

1

  and     , :for    ,,,,,,
3

1
2

1=S

i

ii

cc

ncqq

i

ii

cc

ncq

cc

nc

dcucscmljnbalkEmm

ssbbccmljnbalkEm

M

        

(33) 

Thus, the modified masse of the heavy quarkonium system the heavy-light qQ , 

( )sduqcQ ,/, ==  mesons and the quarkonium system qq , ( )sbcq ,,= become as 

follows:  

( )







++

++
=

dcucscMmm

ssbbccMEm
M

cc

ncqq

cc

ncplqcc

nc
  and   ,:for       

  and     , :for    2
1=S





                   

(34) 

While the modified masses cc

ncM  is given by: 

  
2/1

2/1

2/1

2

1

23

1

















+
+

−++−+
















+ m
l

mm
l

M cc

nc    (35) 

For the spin-zero case, lj =  equal only one value, which allows us to obtain a null 

value for the parameter ( )sljk ,, , thus the modified mass of the quarkonium system 
cc

ncM  can be determined according to the following new generalized formula: 

( )
( )

( )






==+++

==+
=

−

−

dcucscmSlljnbaEmm

ssbbccmSlljnbaEm
M

cc

qq

cc

qcc

nc

ncr

ncr

  and   ,:for  ,0,,,,,

  and     , :for  ,0,,,,,2
0=S

             

(36) 

which gives 

( )
( ) 

( ) 






+++

++
=

dcucscmmsljnEEmm

ssbbccmmsljnEEm
M

ccplqq

ccplqcc

nc
  and   ,:for  ,,,, 

  and     , :for        ,,,,2
0=S

2/1

2/1





          

(37) 

On the other hand, it is evident to consider the quantum number m  takes ( 12 +l ) values 

and we have also two values for llj ,1= , thus any state in ordinary 3-dimensional space 

of the energy for heavy-light qQ , ( )sduqcQ ,/, ==  mesons, and the quarkonium 
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system qq , ( )sbcq ,,= with spin-1 under the modified complex central potential will 

become triplet ( )123 +l sub-states. To obtain the total complete degeneracy of energy 

level of the modified complex potential in the symmetries of the relativistic three-

dimensional noncommutative quantum mechanics, we will have to sum for all allowed 

values of angular momentum quantum number 1,0 −= pl . Total degeneracy is thus, 

( ) ( )  612232122

RNCQM

2
1

0

RQM

2
1

0     
nlnl

p

l

p

l

+→+ 
−

=

−

=

                                     (38) 

The degeneracy of the initial spectral is broken and replaced by a new more precise and 

clear one. The doubled the total complete degeneracy of energy level for the heavy-

light qQ , ( )sduqcQ ,/, ==  mesons and the quarkonium system qq , ( )sbcq ,,= with 

spin-1, inrelativistic noncommutative quantum mechanics symmetries under the 

modified complex potential, gives very clear physical indicator shows that physical 

treatments with relativistic noncommutative quantum mechanics appear more detailed 

and clarity if it compared with similar energy levels obtained in ordinary relativistic 

quantum mechanics. 

 

It should be noted that the appearance of the spin-orbit interaction with the expression 

( )
→→

= SrfrV cc

pert L)( (here
( )

( ) 







++−

+
=

34

1
)(

r

b

r

ia
ME

r

ll
rf ) gives a physical indicator to 

extend the Klein-Gordon equation under central complex potential to the modified 

Klein-Gordonrelativistic three-dimensional noncommutative quantum mechanics 

equation under modified central complex potential to include bosonic particles with 

spin-(1,2…).Let us now look at some important special cases, when 0=a  and 

2Zeb −= , where we conclude the effective Colombian potential in the symmetries of 

relativistic noncommutative three-dimensional real space ( )2,0, ZebarV col

pert −==  and the 

corresponding like radial Schrödinger equation which exactly compatible with the 

results obtained in Ref. [25]: 

( ) ( )
→→









++

+
=−== L

3

2

4

2 )1(
,0,

r

Ze
ME

r

ll
ZebarV col

pert

                            

(39.1) 

and 

( ) ( )

( )

( ) 0
)1(

)1(
2

3

2

4

2

2
22

2

2

=





























++

+
−

+
−








−+−−+

→→

rU

r

Ze
ME

r

ll

r

ll

r

Ze
MEME

dr

d

nl

nl

nlnl

L

 .            (39.2) 
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Regarding obtained results in Equations. (38) and (39), the energy shift is depended on 

the spin non zero (spin-1) can conclude that the modified Klein-Gordon equation which 

treated in our paper under the modified complex potential can be prolonged to describe 

not only spin-zero particles, but particles with spin-1, for example,the heavy-light qQ , 

( )sduqcQ ,/, ==  mesons, and the quarkonium system qq , ( )sbcq ,,= . Thus, one can 

conclude that the modified Klein-Gordon equation becomes similar to the Duffin–

Kemmer equation, which describes bosonic particles with spin non-null. It should be 

noted that our current results are an excellent agreement with our previously published 

work, particularly for example the new modified potential containing Cornell, Gaussian, 

and inverse square terms56, modified quark-antiquark interaction potential57and modified 

Cornell plus inverse quadratic potential58. Furthermore, and in a general way, the 

comparisons show that our results are in very good agreement with reported works25-29. 

Worthwhile it is better to mention that for the two simultaneously limits ( ) ( )0,0, →  , 

we recover the results of the commutative space obtained in Ref.[13] For the modified 

central complex potential, this means that our present calculations are correct. 

 

5. CONCLUSION 

This section of our paper gives a summary of the basic points in our work; we have 

investigated the modified Klein-Gordon equation for modified central complex potential 

in the relativistic noncommutative three-dimensional spaces. The energy levels of the 

ground state, the first excited state and thp excited state (
( ) ( )mljbaE
nc

,,,0,,0
, 

( ) ( )mljbaE
nc

,,,1,,1
, 

( ) ( )mljnbaE n

nc
,,,,, ) as functions of the shift energy ( ( )msljEcc ,,,,0 , 

( )msljEcc ,,,,1 , ( )msljpEcc ,,,, ) and ( lE0 , lE1 ,
plE ), is obtained via first-order 

perturbation theory and expressed bythe parabolic cylinder functions, Gamma function, 

the discreet atomic quantum numbers ( )mslj ,,,  and the potential parameters ( a andb ), in 

addition to the noncommutativity parameters ( and ). This behavior is similar to the 

perturbed both perturbed new modified Zeeman effect and perturbed spin-orbit coupling 

in which an external magnetic field is applied to the system and the spin-orbit couplings 

which are generated with the effect of the perturbed effective potential ( )rV cc

pert
 in the 

symmetries of relativistic three-dimensional noncommutative quantum mechanics. We 

have seen that the physical treatment of modified Klein-Gordon equation under the 

modified central complex potential for bosonic particles like heavy-light qQ , 

( )sduqcQ ,/, ==  mesons and the quarkonium system qq , ( )sbcq ,,= with spin-(0,1) 

gives a very clear physical indicator show that physical treatments with relativistic 

noncommutative quantum mechanics appear more detailed and clarity if it compared 

with similar energy levels obtained in ordinary relativistic quantum mechanics. Thus, we 

can conclude that the modified Klein-Gordon equation becomes similar to the Duffin–

Kemmer equation under the modified central complex potential, it can describe a 

dynamic state of a particle with spin one in the symmetries of relativistic 

noncommutative quantum mechanics.The results related to relativistic quantum 

mechanics under the central complex potentialbecomes a particular case when we make 

the two simultaneously limits ( ) ( )0,0, →  . The comparisons show that our theoretical 
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results are in very good agreement with reported works. Finally, we can conclude the 

important results from this article, are the ability of the modified Klein-Gordon equation 

on playing a vital role in more profound interpretations in describing elementary 

particles such as the heavy-light qQ , ( )sduqcQ ,/, ==  mesons and the quarkonium 

system qq , ( )sbcq ,,= at high-energy physics under the modified central complex 

potential. 
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